164,865 research outputs found

    The local extragalactic velocity field, the local mean mass density, and biased galaxy formation

    Get PDF
    The biased galaxy formation picture accounts for the low apparent mass density derived from clustering dynamics by the assumption that the mass per galaxy is unusually low in the regions of high density where clustering has been studied. It would follow that the mass per galaxy is unusually high where the mass density is low, and, by continuity, that the mass per galaxy is close to the global mean in regions where the ambient mass density, p_t, is close to the global mean, P_b. That is, we would expect that the best chance for an unbiased estimate of the mean mass per galaxy, and hence of P_b, would be from the dynamics of regions with p_t ≈ P_b. The local density at redshifts 200 ≾ cz ≾ 400 km s^(-l) must be close to P_b because, as Sandage has emphasized, the local Hubble flow is so little perturbed. In this paper we derive a relationship between the local mass density and the perturbation of the local Hubble flow. The local mass density is estimated by the method used in the Virgocentric flow. We use the infrared Tully-Fisher distances of Aaronson et al. to find limits on the gravitational perturbation to the local Hubble flow, and we use bright galaxy counts, N, to estimate the local galaxy concentration. The statistics on the latter are weak because N is small. We can conclude, however, that if mass were proportional to N, with no fluctuations, and the local mass per galaxy were a fair sample, then the density parameter (Ω = P_b/Einstein-de Sitter density) would be Ω ≈ 0.1, consistent with the other dynamical estimates and inconsistent with the above naive interpretation of biasing

    The Shane Wirtanen counts: Observability of the galaxy correlation function

    Get PDF
    For an explicit test of the ability to recover the galaxy two-point correlation function from the Lick catalog of Shane and Wirtanen, we have applied the reduction and analysis methods of Seidner et al. and Groth and Peebles to model galaxy distributions that have known plate and field "errors" and that are high-fidelity simulations of the Lick sample. The model galaxy space distribution is constructed with the Soneira-Peebles prescription, which generates model distributions which have two-, three-, and four-point correlation functions in good agreement with the observed correlation functions. The space distribution is projected onto the sky with and without plate "errors." The Seidner et al. analysis recovers the plate factors in the former case with an error of 6.3%, as originally estimated. The two-point correlation function estimated from the "corrected" model catalog reproduces the built-in correlation function including the break from the power law. This is also true if the angular scale of the break is increased or decreased by a factor of 1.76 from the observed value. We also compare a map of the corrected counts with a map of the counts projected without plate errors and find that the corrected map is a good visual representation of the galaxy distribution. Finally, we construct a simulation which includes systematic variations in plate sensitivity with observer and time-so called "plate shape gradients." Once again, the correlation function of the model catalog reproduces the built in correlation function

    The density of mid-sized Kuiper belt objects from ALMA thermal observations

    Get PDF
    The densities of mid-sized Kuiper belt objects are a key constraint into understanding the assembly of objects in the outer solar system. These objects are critical for understanding the currently unexplained transition from the smallest Kuiper belt objects with densities lower than that of water to the largest objects with significant rock content. Mapping this transition is made difficult by the uncertainties in the diameters of these objects, which maps into an even larger uncertainty in volume and thus density. The substantial collecting area of the Atacama Large Millimeter Array allows significantly more precise measurements of thermal emission from outer solar system objects and could potentially greatly improve the density measurements. Here we use new thermal observations of four objects with satellites to explore the improvements possible with millimeter data. We find that effects due to effective emissivity at millimeter wavelengths make it difficult to use the millimeter data directly to find diameters and thus volumes for these bodies. In addition, we find that when including the effects of model uncertainty, the true uncertainties on the sizes of outer solar system objects measured with radiometry are likely larger than those previously published. Substantial improvement in object sizes will likely require precise occultation measurements.Comment: AJ, in pres

    Nuclear reactor descriptions for space power systems analysis

    Get PDF
    For the small, high performance reactors required for space electric applications, adequate neutronic analysis is of crucial importance, but in terms of computational time consumed, nuclear calculations probably yield the least amount of detail for mission analysis study. It has been found possible, after generation of only a few designs of a reactor family in elaborate thermomechanical and nuclear detail to use simple curve fitting techniques to assure desired neutronic performance while still performing the thermomechanical analysis in explicit detail. The resulting speed-up in computation time permits a broad detailed examination of constraints by the mission analyst

    High energy electron spikes at high latitudes

    Get PDF
    Over 750 spikes of precipitating electrons with E or = 425 KeV were observed aboard the low altitude polar orbiter OGO-D between 30 July 1967 and 31 December 1967. The spikes may be divided into three distinct populations, depending on whether they occur at latitudes below, at, or above the local limit of trapping

    Application of calibration masks to TV vidicon tube

    Get PDF
    Photographic application method devised for overlaying test pattern masks on TV camera vidicon tubes prints the mask within 0.0076 cm of the vertical and horizontal center lines of the tube face. Entire process, including mask fabrication and alignment procedure, requires less than 10 minutes

    Fundamental frequency height as a resource for the management of overlap in talk-in-interaction.

    Get PDF
    Overlapping talk is common in talk-in-interaction. Much of the previous research on this topic agrees that speaker overlaps can be either turn competitive or noncompetitive. An investigation of the differences in prosodic design between these two classes of overlaps can offer insight into how speakers use and orient to prosody as a resource for turn competition. In this paper, we investigate the role of fundamental frequency (F0) as a resource for turn competition in overlapping speech. Our methodological approach combines detailed conversation analysis of overlap instances with acoustic measurements of F0 in the overlapping sequence and in its local context. The analyses are based on a collection of overlap instances drawn from the ICSI Meeting corpus. We found that overlappers mark an overlapping incoming as competitive by raising F0 above their norm for turn beginnings, and retaining this higher F0 until the point of overlap resolution. Overlappees may respond to these competitive incomings by returning competition, in which case they raise their F0 too. Our results thus provide instrumental support for earlier claims made on impressionistic evidence, namely that participants in talk-in-interaction systematically manipulate F0 height when competing for the turn
    • …
    corecore