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ABSTRACT

Over 750 spikes of precipitating electrons with E >_ 425 kev

were observed aboard the low altitude polar orbiter OGO 4

between 30 July 1967 and 31 December 1967. The spikes may

be divided into three distinct populations depending on

whether they occur at latitudes below, at, or above the local

limit of trapping. These are designated type 1,2, and 3,

respectively. Type 3 spikes occur in a narrow latitude band

about 3° wide, centered at Invariant Latitude A = 78° at

1000 MLT (Magnetic Local Time) and 68° at 2000 MLT. Their

relative frequency of occurrence, intensity, and hardness

do not depend significantly on MLT. They appear to be

associated with spikes observed near the magnetopause and

neutral sheet. Type 2 spikes also occur in a latitude band

about 3° wide, centered at about 71° at 1000 MLT and 67°

at 2200 MLT. Their frequency of occurrence is highly
t

dependent on MLT, with a large maximum near 2300, and very

few events between 0600 and 1200. They appear to be re-

lated to island fluxes in the neutral sheet, although

they occur on closed field lines and may persist for many

hours. Type 1 spikes occur in a wider band of latitudes,
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from about 62° to 68° near midnight, and 66° to 68° near

noon. The local time dependence of their frequency of

occurrence is similar to that of type 2 spikes, but less

pronounced. Although they are observed on closed field

lines, they do not persist for periods longer than about

one hour, and we conclude that they are produced by strong

pitch-angle scattering from the stably trapped population.

The average spectral index (assuming a power-law spectrum)

is 3 to 5, and the median flux (> 425 kev) is about 150

electrons cm"2sec"1ster"1, although type 2 events near mid-

night tend to be larger and harder. All types tend to be

more intense and to occur at lower latitudes when Kp is large.

Introduction

We will discuss phenomena known as "electron spikes" or "particle

spikes". These are defined as brief, rapid increases in counting rate as |

observed by a particle detector, in this case aboard a low altitude, polar

orbiting spacecraft. Numerous experimenters have observed "spikes" of

electrons at high latitudes, ranging in energy from 0.7 kev [Hoffman and

Evans. 1968; Hoffman, 1969] to above 500 kev [Anderson et al.. 1968;

McCoy, 1969]. In addition, electron "islands" having similar characteris-

tics have been reported in the geomagnetic tail [Montgomery et al., 1965;

Anderson, 1965; Murayama and Simpson, 1968; Retzler and Simpson, 1969],

in the vicinity of the bow shock [Frank and Van Allen, 1964; Anderson et al.,

1965], and near the equatorial plane at moderate distances (5-10 RE) [Frank.

1965; Rosen. 1965; Arnoldy and Chan. 1969]. It is difficult to make definite



connections between these various events because of the small probability

of having several spacecraft properly positioned and aligned at the time

an event occurs. One such identification has apparently been made by

Hones et al. [1971], who observed a spike simultaneously at 1, 6.6 and

18 R£.

Spike observations at low altitudes by polar orbiting spacecraft

offer the advantage of frequent sampling of field lines where spikes are

usually seen. This makes possible statistical studies of the distribution

and behavior of these events, which are necessary to determine their

effect on the energy budget and particle populations within the magneto-

sphere and their relationships to other processes. The purpose of this

paper is to present such a statistical study in which the effects of

relevant physical parameters are represented with sufficient accuracy to

be a useful basis for further theoretical calculations.

It should be emphasized that the present results represent events

with electron energies E >_ 425 kev. There seems to be very little

correlation between spikes in this energy range and those observed by

Hoffman and Evans [1968] in the energy range 0.7 kev <_ E < 24 kev.

Likewise, the phenomena observed here differ significantly from those

reported by McDiarmid and Burrows [1965] for E >_ 40 kev. However, at

least part of our observations may be related to those of Fritz and

Gurnett [1965] for E >_ 10 kev. We will examine the relationships be-

tween these observations, especially with respect to various possible

source mechanisms.

Description of Experiment

The QGO 4 spacecraft was launched into a low altitude polar orbit

on 28 July 1967. Initial orbit parameters were: apogee 908 km, perigee



412 km, inclination 86°, period 98 minutes. The spacecraft was oriented

so that the University of Chicago/California Institute of Technology

vertical particle telescope (Experiment D-08) faced radially away from

Earth. The experiment also included a horizontal detector which was

insensitive to electrons and which will not be discussed here.

A cross section of the vertical telescope is shown in Figure 1. The

detector system is described in detail by Evans et al. [1970].

The opening half-angle of 30°, combined with the radial orientation of the

symmetry axis, ensures that the telescope is responding primarily to

precipitating particles at Invariant Latitudes A > 45°. Mirroring parti-

cles will be detected at these latitudes only if they scatter from the

telescope wall.

Table Vindicates the response of the telescope to various particle

types. The upper cutoff energies in each case are set by the anticoinci-

dence scintillator D3. The rates indicated in Table 1 are monitored, and

the particle energy loss in Dl is pulse-height analyzed for each event

satisfying the DIM requirement. A flag is set for each analyzed event

indicating whether or not D2 was triggered in coincidence with Dl.

Because of the electronic thresholds of the detectors (425 kev for

Dl and 250 kev for D2), electrons which leave enough energy in Dl

to be detected cannot reach D2, and electrons which leave enough

energy in D2 to be detected.will not have left enough in Dl. Therefore

there is a very low probability that electrons cause any D1D2 true

coincidences, and we know we are observing mostly electrons whenever

the D2E3~ rate is large compared to the D1D2E3" rate. Pulse-height data
\

have been used 1n several instances to confirm the above conclusions.



The basic data used in the present work are plots of: D3 rate

(averaged over 1.44 sec intervals), D1D3" rate, D2Dlrate, and D1D2D3"

rate (the last three quantities averaged over approximately 15 second

intervals). These data and descriptive text [Evans et al., 1970]

will be submitted to the National Space Science Data Center.

Spectral Response

A simulation of the detector system was exposed to electrons from

a 3 source. Monoenergetic electrons were selected by means of a magnetic

spectrometer. The true flux of particles at each energy was measured

using a thick total-E detector. The outputs of the telescope detectors

were pulse-height analyzed, and the detection efficiency determined

as a function of discriminator threshold. The detection efficiency for

discriminator thresholds of 425 kev for Dl and 250 kev for D2, multiplied

by the geometrical factors for D1D3 and D2D3", give effective geometrical

factors as functions of energy [Lupton and Stone, .T§72]. We determined

that approximately half of the DlTJJ response to an isotropic flux is due

to electrons scattered from the magnesium wall of the telescope, but that

only about 20% of the D2Dlf response arises from this source.

These functions were approximated by piecewise power-law fits over

various energy intervals, and folded with various assumed power-law

energy spectra to obtain expected counting rates in each detector as

functions of the incident electron spectrum. The same process was carried

out for various assumed exponential spectra using exponential fits to the

effective geometrical factors. Using these computations, it is possible

to obtain a limited amount of spectral information from the ratio DH5J/D2U3".



Preliminary calculations using the results of Fan et al. [1966]

indicated that pileup in Dl might be important for some of the largest

spikes encountered. The pulse pileup effect is important only in the

case of electrons in Dl, where the threshold is set electronically. The

D2 threshold is set primarily by the requirement that the particle have

sufficient range to penetrate Dl and the aluminum absorber, and still

leave 250 kev in D2. Thus the D2D3" counting rate cannot be due to the

pileup of lower energy (5 600 kev) electrons. In order to estimate the

size of the pileup effect, we performed Monte Carlo calculations of the

response of Dl to various input fluxes. The result of the calculation

was, as one would expect, that the D1D3 count rate includes a significant

contribution from pileup effects when that rate is larger than -v 100 sec"1.

Since D2 is unaffected by pileup, the D2lD3 count rate (corrected for dead

time) can be relied upon at all reasonable count rates.

Description and Classification of Spikes

Particle "spikes" are generally defined by their appearance as

narrow peaks in plots of counting rate versus time (or some other parameter

such as Invariant Latitude which varies smoothly with time). It is

impossible to determine, when looking at an individual spike, whether

the rapid variation is a spatial or temporal phenomenon. Observed on a

low-altitude polar orbiting spacecraft, they generally have "widths"

of a few seconds, corresponding to a few tenths of a degree in latitude.

High time-resolution ion chamber data [McCoy. 1969; M. J. George, personal



communication, 1970] indicate typical widths of 0.25° to 2° in Invariant

Latitude, or about 5 to 40 seconds in UT. Thus, our averaging time of

15 seconds in the count-rate plots may obscure some of the smaller,

narrower spikes. For this reason, the D3 rate plot (with shorter averag-

ing time) occasionally shows spikes which are not visible in the Dll)3~

or D2D3 rates.

We have observed a few spikes for which higher data rates were

available. Because of the factor of 8 increase in bit rate, pulse-height

data from these events could be examined with reasonable counting statis-

tics using 2-second time resolution. Four events thus examined had

widths (FWHM) of about 6, 8, 10, and 40 seconds, as indicated by the

electron channels of the Dl pulse-height analyzer. (Due to the large

statistical fluctuations in the electron energy loss process, pulse-

height data from this experiment yields only minimal spectral informa-

tion for electrons. However, pulse-height information does provide

positive identification of electrons.) Figure 2 shows two of these events.

Notice that the D3 rate does not track exactly with the DlBJ rate,

probably because Dl and D3 have different energy and angular response

characteristics.

Disagreement between McDiarmid and Burrows [1965] and McCoy [1969]

about the A - MLT occurrence of spikes and the observation by McCoy [1969]

that the local time dependence for spikes occurring above the trapping

boundary is different from that for those below, suggest that there may

be several distinct populations of spikes, and that each should be

examined separately. We divided the spikes we observed into three types,

according to whether they occur below, at, or above the outer zone boundary
i - - _ - . .

determined for each pass. These will be referred to



as type 1, type 2, and type 3, respectively. In addition, a subdivision

was made of the type 2 spikes on the basis of their appearance on the

rate plots. Some of the spikes show a very sharp boundary on the pole-

ward side, and these are designated as type 2A. Spikes of this type

were observed only at the trapping boundary. Examples of each type

are shown in Figure 3. Unless specified otherwise, references to type 2

spikes do not include type 2A.

The location of a spike relative to the trapping boundary was

determined from the D3 rate, since this had a finer resolution, and thus

usually showed the most detail. The boundary was defined as that point

where the D3 rate reached the polar plateau level, if there was no

spike obscuring that point. If a spike was overlapping the point where

the boundary seemed to be, that spike was designated type 2. Since this

method requires visual inspection and some subjective decision, there is

some ambiguity in several cases, and it is possible that a few of

the spikes have been assigned to the wrong population. This has not

caused any obvious difficulties, but it should be remembered when examin-

ing the results, especially near local midnight,,where there is considerable

overlap.

McCoy [1969] has observed;,that while most spikes do not recur on

successive passes, in some eases a spike may be observed twice at a pair

of nearly conjugate pointsj and in a few rare cases the "same" spike may

be present and detectable for several hours. We confirm this observation.

In fact, on two occasions we observe what appear to be related series of

events lasting over eleven hours, and we observe several groups of shorter

duration. All of the larger groups occur between 2200 and 0100 MLT, and

within one degree of the outer zone boundary. Some of the smaller groups,



with observable lifetimes of about two hours, occur nearer the dawn-dusk

meridian. The development of one of the large groups is illustrated in

Figure 4. This behavior would seem to indicate that the time scales

associated with spikes are of the order of minutes to several hours, and

that the rapid rise and fall characteristic of a spike observed during

a given pass represents a purely spatial effect. Parameters associated with

these observations are listed in Table 2. The A values listed in this

table have a standard deviation of nearly one degree, which indicates

about the limit of accuracy of the values used throughout this paper.

Errors of this magnitude arise from the field model [Jensen and Cain,

1962] used to calculate L, and the 6-10 second resolution (about 0.3 - 0.6

degrees) associated with reading spike times from data plots.

Data

We examined all the data available from rev 24 (30 July 1967)

to rev 2293 (31 December 1967). During this period the experiment was

turned on about 50% of the time. Due to the location of ground stations ,

we lack (tape-recorded) playback data for many passes at latitudes where

spikes usually occur. This leaves us with approximately 2400 passes

(maximum of four passes per orbit) through the "spike region," i.e.

Invariant Latitudes 60° <_ A <_ 78°, for which we have useful data. All

local times have been sampled without any obvious bias, and so it is
i

tempting to assume that the data represent uniform coverage of all local

times. We will do this for the moment, but a detailed discussion of the

coverage problem will be presented in a later section.

The data to be presented here represent 774 spike observations, of

which about 50 to 100 probably are multiple observations of a smaller
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number of long-lasting events. Figure 5 shows all of the spikes plotted

in Invariant Latitude (A) versus Magnetic Local Time (MLT) coordinates.

(Invariant Latitude is defined as cos A = vTTt, with L calculated from

the Jensen and Cain 1960 [Jensen and Cain, 1962] field. See Fritz and

Gurnett [1965] for a definition of MLT, but note that the vector products

in the denominator of their equation should be cross products.) Notice the

significant local time asymmetry: there are comparatively few events

between 0600 and 1200, while there is a large maximum between 2200 and 0400.

Notice also that there are very few events which seem to be on open field

lines, and that the events cluster about the trapping limit.

Figure 6 shows the same data mapped along field lines into the

equatorial plane. The mapping used is that of Fairfield [1968]. Included for

later discussion are regions where other investigators have observed spikes.

The first step in analyzing the data was to take a detailed look at

the A - MLT dependence for each population. In doing this it was found

that, while some very interesting patterns emerged, there was still a

large amount of scatter in the data. It was thought that some of the

variation in latitude at a given local time might be related to geomagnetic

activity. To check this assumption, spikes of each type were grouped into

local time bins such that the variation of A with MLT within each bin was

no larger than the scatter in A. Plots were then made of A versus Kp for the

spikes in each bin, and it became apparent that a significant effect was

indeed present. One such plot is shown in Figure 7. Since the data were

broken down into so many bins, statistics became poor, and justified nothing

more than a straight-line fit to the A - Kp dependence in each bin. A

linear regression analysis was -performed on the.data in each bin, and the
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results are shown in Table 3. Using these results with some smoothing,

it is possible to define a new latitude A', which is the latitude of

occurrence of a spike corrected to Kp = 0. This reduced the scatter at

a fixed MLT, but only by about 10% to 30%.

Plots of A' versus MLT are shown in Figure 8. Several observations

may be made about these plots. First, it seems reasonable to assume

that the strong dependence of A1 on MLT for type 3 spikes is due to the

distortion of the outer magnetosphere. Second, it can be seen that the

high rate of occurrence of spikes near local midnight is due primarily

to type 2 spikes, especially those of type 2A. Notice the pronounced

clustering of the latter near local midnight.

In an attempt to determine whether the remaining scatter in A1

could be attributed to any systematic effect, the local time variations,

represented by Fourier series fits to the data in Figure 8, were sub-

tracted out. The resulting quantity was plotted against Universal Time

and against the angle between the earth's dipole axis and the earth-

sun line. No dependence was found in either case. This leads us to

suspect that the remaining scatter is due to 1) inaccuracy in the model

of the internal field [Jensen and Cain. 1962] used to generate the

original A values, 2) mislabelling of some of the spikes, 3) errors of

a few seconds in reading times from data plots, 4) neglect of the exter-

nal field in calculating A, or 5) true spatial fluctuations in the

process that produces the spikes. Since this remaining scatter is large

compared to the reduction in scatter achieved by extrapolating to zero

Kp, the remainder of the discussion will not include this correction.

The distributions of the intensities and spectral hardnesses of the

spikes are of interest for comparison with possible production mechanisms,
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The peak counting rates D1D3~ and D2l)3~, corrected for background, have

been determined for each spike. Due to the 15-second averaging, these

will be underestimates of the true peak values for narrow spikes, but

will be good estimates for the average flux. We find that the type 2A

spikes seem to be much harder spectrally than the others. The type 3

spikes may be slightly softer on the average than either the type 1 or

type 2 spikes.

It is not surprising to find that larger events tend to occur during

magnetically disturbed periods. There is a slight correlation between

the D1D3" rate and Kp value, but plots of DlTJ3~/D2TJ3 against Kp indicate

no significant dependence, except for a slight positive correlation

probably due to the pileup effect in the D1D3~ rate.

Finally, Figure 9 shows the number distribution of spike intensities.

The levelling-off at small values of D1D3 is probably due in part to the

difficulty of detecting small spikes and should not be considered signifi-

cant.

Magnetic Local Time and Kp Dependence

In order to obtain the correct dependence of spike occurrence on such

parameters as MLT and Kp, it is necessary to correct the observations for

non-uniform sampling. It is common practice, when treating data of this

kind from a polar orbiter, to make a cursory check to see that all local

times have been sampled more or less uniformly, and then to assume that

the coverage is indeed uniform and random. This procedure may conceal some

peculiarity in the orbit, or accidental correlations between orbit para-

meters and telemetry coverage.
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To investigate these possibilities and to correct for them, we

employed the following procedure (similar to that used by Fritz and

Gurnett [1965]). Data plots were examined to determine times for which

useable data were available and processed, regardless of whether or not

spikes were present. Then, spacecraft attitude/orbit data for these

times only, and for A > 55°, were selected for further processing. The

orbit sections thus selected were examined in detail, and their distri-

butions in A-MLT-Kp space were computed, summarized, and used to normalize

the spike occurrences.

Figure 10 shows the distribution in MLT of the occurrences of spikes

of various types. The comparison between the raw number of occurrences

and the normalized data gives some indication of the importance of the

normalization. For instance, it indicates that the apparent local maximum

in the occurrence of type 3 spikes near 0500 MLT is an effect of non-

uniform coverage. This, combined with the possibility of a few misidenti-

fied spikes at other local times, indicates that the local-time dependence

of type 3 spikes is not significantly different from a uniform distribution

in the dawn hemisphere. The peak near 1300 MLT may be related to the posi-

tion of the neutral point, as will be discussed below. The overall local-time

behavior is similar to that obtained by Fritz and Gurnett [1965] for elec-

trons with E > 10 kev. The absolute numbers are not directly comparable,
Q •••"•

however, due to the difference in energy thresholds and the difference in

the threshold intensity for a spike to be counted. A rough comparison,

neglecting the difference in solar activity, can be made if we assume an

E"3-5 differential energy spectrum to map their flux threshold for

E >_ 10 kev (j >_ 2.5 x 107 electrons cm"2sec"1ster"1) to our energy

threshold. The corresponding flux for E >_ 425 kev would be approximately
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2.1 x 103 electrons cm'2sec' ̂tef l
t and the corresponding DlU3~ counting

rate is about 140 sec"1. About 15% of our spikes (average of all types)

are larger than this (c_f_. Figure 9), so we should multiply the normalized

occurrence scale in Figure 10 by 0.15 to make the comparison. This gives

about a 5% peak occurrence probability near local midnight, which compares

well with the value of ̂  4% reported by those authors. We also get

qualitative agreement with their latitude and Kp dependences. Although

the absolute numbers depend strongly on the assumed spectrum, this pro-

cedure shows that it is not unreasonable to assume that the spikes we

observe at energies above 425 kev are simply manifestations of the high-

energy tails of large events observed at much lower energies.

The normalized dependence of spike occurrence on Kp is shown in

Figure 11. Here the correction for non-uniform sampling is even more

important, since there are very few passes at high Kp. As might be

expected, spikes are observed more frequently at times of high Kp,

except those of type 2A, which appear to show the opposite behavior.

Discussion

The most striking feature of the data presented here is

that the spikes can be grouped into several distinct populations with

widely different characteristics. This grouping emphasizes the organiz-

ing power of various physical parameters, allowing more reliable and

accurate descriptions of the phenomena and possible source mechanisms.

We assume that there are only three possible sources for spikes observed

at low altitudes: 1) local acceleration on lines of force connected to

the region of observation, 2) scattering from the stably trapped popula-

tion, and 3) transport from various regions of the outer magnetosphere,



15

possibly accompanied by acceleration. These will be discussed in

relation to each spike type.

Type 1 spikes have several characteristics which point to their

most likely source: 1) by definition, they occur at latitudes below

the trapping limit, and so are on closed field lines and able to exhibit

trapped or pseudo-trapped behavior; 2) they are not observed to persist

on successive orbits, indicating lifetimes less than about 100 minutes;

3) their intensities are not much larger than that of outer zone trapped

electrons. These observations are consistent with local acceleration or

pitch angle scattering from the stably trapped population into the loss

cone. While we are not able to distinguish between these alternatives on

the basis of the data presented here, the second possibility appears far

more attractive. Strong pitch-angle scattering is fairly well understood

[Kennel and Petschek, 1966], although the details for impulsive events at

the energies we observe have not been discussed explicitly. It is unlikely

that the trapped 425 kev electron flux is near the point of self-excitation

of the Kennel and Petschek mechanism, but scattering at this energy might

be caused by interactions with waves generated by lower energy particles.

Local acceleration to relativistic energies would seem less likely.

Type 3 spikes present a totally different picture. Their latitude-

local time dependence strongly suggests that they are occurring near the

"last" closed field line at evegy local time. This means that they occur on

lines which approach the magnetopause or the neutral sheet, depending on

the local time at the foot. The peak in occurrence just east of local

noon (see Figure 10) indicates possible connection to the neutral point,

where field turbulence might be expected to be large. Several experimenters

(see Figure 6) have observed similar impulsive fluxes of. high energy electrons
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both near the magnetopause and near the neutral sheet, and Meng

and Anderson [1970] have observed a sheet of electrons (> 40 kev)

near the magnetopause. The source mechanism(s) for these events

has not been definitely established, but it seems likely that the low

altitude spikes of type 3 and the distant fluxes may be manifestations

of the same process. Notice, however, that the mapping of Fairfield

[1968] (Figure 6) indicates that the precipitating spikes are associated

not with the magnetopause, but with the flanks of the magnetosphere.

Both a better field model and simultaneous observations at low altitudes

and near the magnetopause are needed to distinguish between these possi-

bilities.

The type 2 spikes (and especially type 2A) present an even more

interesting picture. The strong day-night asymmetry and the latitude of

occurrence near midnight (A ~ 67°) indicate that these events are related

to the neutral sheet and/or the cusp region. Hones et al. [1971] have

observed an energetic electron spike simultaneously at 1, 6.6, and 18

earth radii near local midnight. This confirms the interpretation that

neutral sheet spikes and low altitude spikes are directly related. A

likely acceleration mechanism would be merging of field lines in the

neutral sheet and subsequent collapse of the stretched field lines into

a dipole-like configuration, perhaps preceded by particle precipitation

and field deflation at L = 4-6. This process has been suggested by

Axford [1969], and observed by McPherron and Coleman [1970], and by

Lezniak and Winckler [1970]. The results of Arnoldy and Chan [1969]

seem to indicate that electron spikes observed at 6.6 FL have drifted

from an injection point at local midnight. Moreover, the observations

of Hones et al. [1968] indicate that the source is probably nearer than

17 R^ to the earth. Parks [1970], however, has attributed some events

of this type to strong pitch angle diffusion.
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The type 2A spikes are of special interest, since their characteristically

sharp cutoff on the high-latitude side and their strong tendency to occur

conjugately indicate that they may define very accurately the last closed

field line near local midnight. Examination of Figure 4 illustrates this

clearly. The spike first appeared at 1910 UT during the north polar pass

of rev 827. At this time the trapping limit was at a higher latitude,

but within 50-60 minutes it had moved down to the latitude of the spike.

The configuration of the magnetosphere then apparently remained fairly

stable for about ten hours, until some time between 0500 UT and 0720 UT,

when the spike disappeared rather abruptly. This should not be assumed

to be a common occurrence, however, since only two events of such long

duration were observed, and since the scarcity of type 2 events on the

day side and the short lifetimes of type 1 and type 3 spikes indicate

that stable trapping of spike particles is uncommon. The results of

Arnoldy and Chan [1969] indicate that the decay time at 6.6 RE is probably

about the same as the drift period for electron energies 50 kev < Ea <
— Q —

150 kev.

Summary

The vertical particle telescope on 060 4 has detected numerous spikes

of precipitating electrons with energies .above 425 kev. These occur

within a few degrees of the high-latitude boundary of the outer zone, and

have characteristic widths on the order of one degree in latitude. The

time scale for buildup and decay of an event is of the order of several

minutes to several hours.
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It is instructive to group the spikes into several populations on

the basis of their latitude with respect to the outer zone boundary.

The local-time dependence is highly non-uniform, with at least five times

as many events occurring near 2200 MLT as near 1000 MLT. The disparity

is much greater (about 12:1) if only those spikes occurring at or below

the outer zone boundary are considered.

The average Invariant Latitude of occurrence is 67°-68°, but this

is strongly dominated by the large number of spikes occurring near local

midnight. They tend to occur at higher latitudes, and to have a larger

spread in latitudes, near local noon. The effect of local time on

latitude is strongest for those spikes which occur above the trapping

boundary.

Latitude of occurrence is'also affected by geomagnetic disturbance,

as indicated by the Kp index. The latitude tends to be decreased by

about 0.6 ± 0.3 degrees per unit Kp, and this effect is stronger near

local noon than near midnight.

Fits to assumed power-law spectra indicate an average spectral index

of 4 to 5 (or e-folding energies of 130 to 170 kev for exponential spectra),

except for special large, characteristically-shaped events (type 2A) which

occur at the trapping boundary near local midnight and have a spectral index

around 3 for power-law (or 260 kev e-folding energy for exponential). The

median flux (E > 425 kev) is about 150 electrons cm"2sec"1ster~1, except

for the low-latitude (type 1) events and the special (type 2A) events men-

tioned above, which are about five times as large.
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TABLE 1. Detector response

Detector (s)

D1D3

D2D3~

D1D2D3

D3

P

(Mev)

1.22-39.2

9.32-39.2

9.32-39.2

I 9.3

a

(Mev)

4.88-157

37.3-157

37.3-157

> 37

e*

(Mev)

0.45-1.8

0.7 -4

-

> 0.5

An
P.ot

(cm2ster)

1.05-1.18

1.50 1.56

1.05-1.18

Ane(max.)

(cm2ster)

0.08

0.36

0

""Electron energies at which Ane ^ 0.5 An (max.)



TABLE 2. Parameters associated with

Figure 4.

REV UT*

827N 1910.3

827S 1946.0

828N 2048.3

828S 2126.0

829N 2226.4

829S 2305.7

830N 0004.8

830S 0045.3

831N 0143.4

831 S 0224.0

832N 0323.0

832S 0402.6

833N 0502.2

oooc

834N —— — _ _ -

834S 0719.0

A

67.0

65.2

67.3

67.2

67.9

67.1

68.3

67.3

69.3

66.7

68.0

67.2

67.8

-- NO

-- NO

68.5

the persistent

MLT

1.1

0.8

1.6

Q'.2

2.1

23.7

2.3

23.6

2.1

0.0

1.4

0.8

0.7

DATA --

DATA --

3.0

21

spike shown in

Dl D3 f D2D3 f

67 107

97 98

16 250

250 250

— . NO DATA —

250 320

--- NO DATA ™

490 620

— NO DATA —

390 620

24 75

400 500

— NO DATA —

—

— —
8 14

* Hours, minutes, tenths.

t Counting rates, counts/second.
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TABLE 3. Results of regression analysis: l inear fit of A versus Kp in

various MLT intervals.

TYPE

1

1

1

1

1

2

2

2

2

2

2A

2A

2A

3

3

3

3

3

3

3

MLT

0-4

4-9

9-16

16-21

21-24

0-4

4-8

8-15

15-19

19-24

0-4

4-19

19-24

0-4

4-7

7-9

9-11

11-13

13-17

17-24

NUMBER
OF

SPIKES

44

15

22

40

38

88

31

27

59

89

54

13

68

30

32

16

12

14

57

25

<*>

65.0

64.2

66.8

64.3

65.3

67.3

68.6

69.5

67.8

66.4

66.8

68.4

66.2

68.1

70.3

73.4

75.9

74.0

70.6

68.3

SLOPE (dA/dKp)

+ .03 ±.26

+ .09±.27

--.48 ±.22

-.92±.27

-.97±.19

-.39±.12

-.83±.18

-.23±.23

-.81±.17

-.61±.12

-.65±.14

-.82±.42

-.68±.15

-.11+.29

-.07±.29

-.62±.32

-.49±.37

-l.06i.43

-.90+.28

-.55±.33
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FIGURE CAPTIONS

Figure 1. OGO 4 vertical telescope cross section. Not shown is a

magnesium wall which covers the inner side of the scintillator.

Figure 2. Real-time data from revolutions 2878 and 2880, showing large

spikes. Dl data includes only those events which pulse-height

analysis shows to be electrons. The events shown occurred at

0120 and 0125 MLT and had widths (FWHM) of 6 and 10 seconds.

Neither of these events is included in the rest of the data

presented.

Figure 3. Examples of data plots showing spikes of each type. Notice

that the D1D2D3 rate is much smaller than the D2D~3~ rate for

each spike, indicating electrons.

Figure 4. Development of a long-lasting event. The arrows indicate the

position of the spike. Data for revolutions 826 and 835 show

no spike, so we assume that this represents the complete history

of the event. The sharp cutoff on the poleward side from

revolution 828 to 833 is characteristic of type 2A spikes. Notice

the more gradual blending into the polar rate in revolution 827

and 834. Invariant Latitude is indicated for revolution 827 only.

See Table 2 for details of each spike. :
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Figure 5. Latitude-local time plot of all spike observations. Notice

the relative scarcity of events between 0600 and 1200 MLT,

and the clustering of events near the average trapping boundary.

Boundaries are those of McDiarmid and Burrows [1968], determined

from 35 kev electron data.

Figure 6. Data from Figure 5 mapped along field lines into the magnetic

equatorial plane using the results of Fairfield [1968].

Points with tick marks attached were outside the range of

the mapping, and probably should be moved in the direction

indicated by the ticks. Regions where other experimenters

have observed "island fluxes" of electrons far from the earth

are included for comparison. Tick marks on axis lines are at

± 10 R£. Local time orientation is the same as in Figure 5.

Figure 7. Sample plot of A versus Kp for a limited range of MLT, showing

the tendency for spikes to occur at lower latitudes during

magnetically disturbed times. The straight line is a least-
I

squares fit to the points shown. The horizontal bars define

the points included in the means. The vertical bars denote the

standard deviations of the means.

Figure 8. Plots of "corrected" Invariant Latitude (A corrected to Kp = 0)

versus Magnetic Local Time. Error bars have the same meaning

as in Figure 7.
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Figure 9. Relative number of spikes larger than a given value of D1D3.

Figure 10. Number of spikes of each type as a function of MLT. Note

that local midnight is in the center of the time axes,

primarily to emphasize the Type 2A distribution. Also

included are data normalized for unequal local-time coverage

(see section on coverage normalization). Dotted lines

represent raw counts, solid lines are normalized. Error bars

refer only to the statistics associated with the number of

events observed.

Figure 11. Relation between spike occurrence and Kp.
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D2 Au-Si Detector
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Copper Absorber
1.79 gm/cm2

Scale I cm

* Scintillator is surrounded by 138 mg/cm2 of magnesium.

D| and D2 both have depletion depths of 56 mg/cm2.
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