992 research outputs found
Revisiting the luminosity function of single halo white dwarfs
White dwarfs are the fossils left by the evolution of low-and
intermediate-mass stars, and have very long evolutionary timescales. This
allows us to use them to explore the properties of old populations, like the
Galactic halo. We present a population synthesis study of the luminosity
function of halo white dwarfs, aimed at investigating which information can be
derived from the currently available observed data. We employ an up-to-date
population synthesis code based on Monte Carlo techniques, that incorporates
the most recent and reliable cooling sequences for metal poor progenitors as
well as an accurate modeling of the observational biases. We find that because
the observed sample of halo white dwarfs is restricted to the brightest stars
only the hot branch of the white dwarf luminosity function can be used for such
purposes, and that its shape function is almost insensitive to the most
relevant inputs, like the adopted cooling sequences, the initial mass function,
the density profile of the stellar spheroid, or the adopted fraction of
unresolved binaries. Moreover, since the cut-off of the observed luminosity has
not been yet determined only lower limits to the age of the halo population can
be placed. We conclude that the current observed sample of the halo white dwarf
population is still too small to obtain definite conclusions about the
properties of the stellar halo, and the recently computed white dwarf cooling
sequences which incorporate residual hydrogen burning should be assessed using
metal-poor globular clusters.Comment: 9 pages, 9 figures, accepted for publication in A&
The potential of the variable DA white dwarf G117-B15A as a tool for Fundamental Physics
White dwarfs are well studied objects. The relative simplicity of their
physics allows to obtain very detailed models which can be ultimately compared
with their observed properties. Among white dwarfs there is a specific class of
stars, known as ZZ-Ceti objects, which have a hydrogen-rich envelope and show
periodic variations in their light curves. G117-B15A belongs to this particular
set of stars. The luminosity variations have been successfully explained as due
to g-mode pulsations. G117-B15A has been recently claimed to be the most stable
optical clock ever found, being the rate of change of its 215.2 s period very
small: \dot{P}= (2.3 +- 1.4)x10^{-15} s s^-1, with a stability comparable to
that of the most stable millisecond pulsars. The rate of change of the period
is closely related to its cooling timescale, which can be accurately computed.
In this paper we study the pulsational properties of G117-B15A and we use the
observed rate of change of the period to impose constraints on the axion
emissivity and, thus, to obtain a preliminary upper bound to the mass of the
axion. This upper bound turns out to be 4cos^{2}{\beta} meV at the 95%
confidence level. Although there are still several observational and
theoretical uncertainties, we conclude that G117-B15A is a very promising
stellar object to set up constraints on particle physics.Comment: 32 pages, 14 figures, accepted for publication in New Astronom
Gravitational settling of 22Ne and white dwarf evolution
We study the effects of the sedimentation of the trace element 22Ne in the
cooling of white dwarfs. In contrast with previous studies, which adopted a
simplified treatment of the effects of 22Ne sedimentation, this is done
self-consistently for the first time, using an up-to-date stellar evolutionary
code in which the diffusion equation is coupled with the full set of equations
of stellar evolution. Due the large neutron excess of 22Ne, this isotope
rapidly sediments in the interior of the white dwarf. Although we explore a
wide range of parameters, we find that using the most reasonable assumptions
concerning the diffusion coefficient and the physical state of the white dwarf
interior the delay introduced by the ensuing chemical differentation is minor
for a typical 0.6 Msun white dwarf. For more massive white dwarfs, say M_Wd
about 1.0 Msun, the delay turns out to be considerably larger. These results
are in qualitatively good accord with those obtained in previous studies, but
we find that the magnitude of the delay introduced by 22Ne sedimentation was
underestimated by a factor of about 2. We also perform a preliminary study of
the impact of 22Ne sedimentation on the white dwarf luminosity function.
Finally, we hypothesize as well on the possibility of detecting the
sedimentation of 22Ne using pulsating white dwarfs in the appropriate effective
temperature range with accurately determined rates of change of the observed
periods.Comment: To apper in The Astrophysical Journa
Pulsations of massive ZZ Ceti stars with carbon/oxygen and oxygen/neon cores
We explore the adiabatic pulsational properties of massive white dwarf stars
with hydrogen-rich envelopes and oxygen/neon and carbon/oxygen cores. To this
end, we compute the cooling of massive white dwarf models for both core
compositions taking into account the evolutionary history of the progenitor
stars and the chemical evolution caused by time-dependent element diffusion. In
particular, for the oxygen/neon models, we adopt the chemical profile resulting
from repeated carbon-burning shell flashes expected in very massive white dwarf
progenitors. For carbon/oxygen white dwarfs we consider the chemical profiles
resulting from phase separation upon crystallization. For both compositions we
also take into account the effects of crystallization on the oscillation
eigenmodes. We find that the pulsational properties of oxygen/neon white dwarfs
are notably different from those made of carbon/oxygen, thus making
asteroseismological techniques a promising way to distinguish between both
types of stars and, hence, to obtain valuable information about their
progenitors.Comment: 11 pages, including 11 postscript figures. Accepted for publication
in Astronomy and Astrophysic
New phase diagrams for dense carbon-oxygen mixtures and white dwarf evolution
Cool white dwarfs are reliable and independent stellar chronometers. The most
common white dwarfs have carbon-oxygen dense cores. Consequently, the cooling
ages of very cool white dwarfs sensitively depend on the adopted phase diagram
of the carbon-oxygen binary mixture. A new phase diagram of dense carbon-oxygen
mixtures appropriate for white dwarf interiors has been recently obtained using
direct molecular dynamics simulations. In this paper, we explore the
consequences of this phase diagram in the evolution of cool white dwarfs. To do
this we employ a detailed stellar evolutionary code and accurate initial white
dwarf configurations, derived from the full evolution of progenitor stars. We
use two different phase diagrams, that of Horowitz et al. (2010), which
presents an azeotrope, and the phase diagram of Segretain & Chabrier (1993),
which is of the spindle form. We computed the evolution of 0.593 and 0.878M_sun
white dwarf models during the crystallization phase, and we found that the
energy released by carbon-oxygen phase separation is smaller when the new phase
diagram of Horowitz et al. (2010) is used. This translates into time delays
that are on average a factor about 2 smaller than those obtained when the phase
diagram of Segretain & Chabrier (1993) is employed. Our results have important
implications for white dwarf cosmochronology, because the cooling ages of very
old white dwarfs are different for the two phase diagrams. This may have a
noticeable impact on the age determinations of very old globular clusters, for
which the white dwarf color-magnitude diagram provides an independent way of
estimating their age.Comment: 7 pages, 7 figures, accepted for publication in Astronomy and
Astrophysic
The contribution of oxygen-neon white dwarfs to the MACHO content of the Galactic halo
Context. The interpretation of microlensing results towards the Large Magellanic Cloud (LMC) still remains controversial. White dwarfs have been proposed to explain these results and, hence, to contribute significantly to the mass budget of our Galaxy. However, several constraints on the role played by regular carbon-oxygen white dwarfs exist. Aims. Massive white dwarfs are thought to be made of a mixture of oxygen and neon. Correspondingly, their cooling rate is larger than those of typical carbon-oxygen white dwarfs and they fade to invisibility in short timescales. Consequently, they constitute a good candidate for explaining the microlensing results. Methods. Here, we examine in detail this hypothesis by using the most recent and up-to-date cooling tracks for massive white dwarfs and a Monte Carlo simulator which takes into account the most relevant Galactic inputs. Results. We find that oxygen-neon white dwarfs cannot account for a substantial fraction of the microlensing depth towards the LMC, independently of the adopted initial mass function, although some microlensing events could be due to oxygen-neon white dwarfs. Conclusions. The white dwarf population contributes at most a 5% to the mass of the Galactic halo.Facultad de Ciencias Astronómicas y GeofísicasInstituto de Astrofísica de La Plat
- …