49 research outputs found

    Erosion-oxidation of pressure vessel steel P265GH

    Get PDF
    The behaviour of pressure vessel steel P265GH was studied in a centrifugal high-temperature erosion apparatus under impacts by silica (SiO2) particles moving at velocities ranging from 20 to 60 m s-1 and contacting the surface at the angles of 30° and 90°. Besides particle impacts, the steel was simultaneously exposed to air and elevated temperatures of 350 and 450°C. For comparison, the tests were also performed in the absence of erodent particles. After the tests, the material behaviour was evaluated in terms of occurred weight changes and surface characteristics, the latter ones of which were investigated by using, for example, scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). In the analysis of the test results, special attention was paid to the composition and microstructure of the used silica particles and how these influence the elemental distribution on the exposed surfaces. The results show that the particle impacts introduce weight losses that follow a ductile angle-dependency, i.e., relatively greater weight losses at the shallow than at the steep impact angle. Although evident oxide scales developed on the surfaces at the test temperatures, they did not provide the steel with protection against particle impacts. Particle debris was detected embedded in the surfaces particularly under impacts at 90°, with softer particle constituents being preferentially deposited. These results are discussed in terms of the erosion-oxidation behaviour of the steel and the consequences of the heterogeneous erodent particle quality

    Characterization of surface films that develop on pre-oxidized copper in anoxic simulated groundwater with sulphide

    Get PDF
    Surface films formed on pre-oxidized copper in anoxic simulated groundwater with sulphide were characterized by field emission gun scanning electron microscopy (FEG-SEM), Fourier transform infrared spectroscopy (FT-IR), open circuit potential (OCP) measurements, and via analysing the water chemistry and weight changes in the specimens. Additionally, films developed under identical conditions on pre-oxidized and ground copper specimens were characterized by glow discharge optical emission spectroscopy (GDOES). The results revealed that the sulphide content in the groundwater significantly influences the morphology, composition and thickness of the surface film. The build-up of Cu2S was evidenced at the sulphide contents of 32 mg/L and 320 mg/L. GDOES depth profiling revealed that sulphur and oxygen coexisted in the film all through its thickness, yet the surface was essentially rich in sulphur. The results from characterization are presented in detail in this paper and discussed from the perspective of capabilities of the used methods
    corecore