55 research outputs found

    GBM heterogeneity as a function of variable epidermal growth factor receptor variant III activity.

    Get PDF
    Abnormal activation of the epidermal growth factor receptor (EGFR) due to a deletion of exons 2-7 of EGFR (EGFRvIII) is a common alteration in glioblastoma (GBM). While this alteration can drive gliomagenesis, tumors harboring EGFRvIII are heterogeneous. To investigate the role for EGFRvIII activation in tumor phenotype we used a neural progenitor cell-based murine model of GBM driven by EGFR signaling and generated tumor progenitor cells with high and low EGFRvIII activation, pEGFRHi and pEGFRLo. In vivo, ex vivo, and in vitro studies suggested a direct association between EGFRvIII activity and increased tumor cell proliferation, decreased tumor cell adhesion to the extracellular matrix, and altered progenitor cell phenotype. Time-lapse confocal imaging of tumor cells in brain slice cultures demonstrated blood vessel co-option by tumor cells and highlighted differences in invasive pattern. Inhibition of EGFR signaling in pEGFRHi promoted cell differentiation and increased cell-matrix adhesion. Conversely, increased EGFRvIII activation in pEGFRLo reduced cell-matrix adhesion. Our study using a murine model for GBM driven by a single genetic driver, suggests differences in EGFR activation contribute to tumor heterogeneity and aggressiveness

    Attractive and repulsive cracks in a heterogeneous material

    Full text link
    We study experimentally the paths of an assembly of cracks growing in interaction in a heterogeneous two-dimensional elastic brittle material submitted to uniaxial stress. For a given initial crack assembly geometry, we observe two types of crack path. The first one corresponds to a repulsion followed by an attraction on one end of the crack and a tip to tip attraction on the other end. The second one corresponds to a pure attraction. Only one of the crack path type is observed in a given sample. Thus, selection between the two types appears as a statistical collective process.Comment: soumis \`a JSTA

    Updated projections of future vCJD deaths in the UK

    Get PDF
    BACKGROUND: Past projections of the future course of the vCJD epidemic in the UK have shown considerable uncertainty, with wide confidence bounds. However, recent vCJD case data have indicated a decrease in the annual incidence of deaths over the past two years. METHODS: A detailed survival model is fitted to the 121 vCJD deaths reported by the end of 2002 stratified by age and calendar time to obtain projections of future incidence. The model is additionally fitted to recent results from a survey of appendix tissues. RESULTS: Our results show a substantial decrease in the uncertainty of the future course of the primary epidemic in the susceptible genotype (MM-homozygous at codon 129 of the prion protein gene), with a best estimate of 40 future deaths (95% prediction interval 9–540) based on fitting to the vCJD case data alone. Additional fitting of the appendix data increases these estimates (best estimate 100, 95% prediction interval 10–2,600) but remains lower than previous projections. CONCLUSIONS: The primary vCJD epidemic in the known susceptible genotype in the UK appears to be in decline

    Id4 promotes the elimination of the pro-activation factor ascl1 to maintain quiescence of adult hippocampal stem cells

    Get PDF
    Quiescence is essential for the long-term maintenance of adult stem cells but how stem cells maintain quiescence is poorly understood. Here we show that neural stem cells in the adult mouse hippocampus actively transcribe the pro-activation factor Ascl1 regardless of their activated or quiescent states. We found that the inhibitor of DNA binding protein Id4 is enriched in quiescent neural stem cells and that elimination of Id4 results in abnormal accumulation of Ascl1 protein and premature stem cell activation. Accordingly, Id4 and other Id proteins promote elimination of Ascl1 protein in neural stem cell cultures. Id4 sequesters Ascl1 heterodimerisation partner E47, promoting Ascl1 protein degradation and stem cell quiescence. Our results highlight the importance of non-transcriptional mechanisms for the maintenance of neural stem cell quiescence and reveal a role for Id4 as a quiescence-inducing factor, in contrast with its role of promoting the proliferation of embryonic neural progenitors

    Axitinib in the treatment of renal cell carcinoma: design, development, and place in therapy

    No full text
    Audrey Bellesoeur, Edith Carton, Jerome Alexandre, Francois Goldwasser, Olivier Huillard Department of Medical Oncology, Hopital Cochin AP-HP, Paris, France Abstract: Since 2005, the approved first-line treatment of metastatic renal cell carcinoma consists in tyrosine kinase inhibitors (TKIs) targeting the vascular endothelial growth factor receptors (VEGFRs). Axitinib is an oral second-generation TKI and a potent VEGFR inhibitor with a half maximal inhibitory concentration for the VEGF family receptors 10-fold lower than other TKIs. Axitinib activity in renal cell carcinoma (RCC) patients has been studied in various settings and particularly as second-line treatment. In this setting, axitinib with clinically based dose escalation compared to sorafenib has demonstrated an improvement in progression-free survival in a randomized Phase III trial leading to US Food and Drug Administration approval. In the first-line setting, axitinib failed to demonstrate improved efficacy over sorafenib, but the field of RCC treatment is rapidly changing with novel TKIs as cabozantinib or the emergence of check point inhibitors as nivolumab and the place of axitinib in therapy is therefore challenged. In this review, we focus on axitinib pharmacological and clinical properties in RCC patients and discuss its place in the treatment of patients with RCC. Keywords: renal cell carcinoma, tyrosine kinase inhibitors, vascular endothelial growth factor, axitinib, pharmacolog

    Heparan sulfate sulfatase SULF2 regulates PDGFRα signaling and growth in human and mouse malignant glioma

    No full text
    Glioblastoma (GBM), a uniformly lethal brain cancer, is characterized by diffuse invasion and abnormal activation of multiple receptor tyrosine kinase (RTK) signaling pathways, presenting a major challenge to effective therapy. The activation of many RTK pathways is regulated by extracellular heparan sulfate proteoglycans (HSPG), suggesting these molecules may be effective targets in the tumor microenvironment. In this study, we demonstrated that the extracellular sulfatase, SULF2, an enzyme that regulates multiple HSPG-dependent RTK signaling pathways, was expressed in primary human GBM tumors and cell lines. Knockdown of SULF2 in human GBM cell lines and generation of gliomas from Sulf2–/– tumorigenic neurospheres resulted in decreased growth in vivo in mice. We found a striking SULF2 dependence in activity of PDGFRα, a major signaling pathway in GBM. Ablation of SULF2 resulted in decreased PDGFRα phosphorylation and decreased downstream MAPK signaling activity. Interestingly, in a survey of SULF2 levels in different subtypes of GBM, the proneural subtype, characterized by aberrations in PDGFRα, demonstrated the strongest SULF2 expression. Therefore, in addition to its potential as an upstream target for therapy of GBM, SULF2 may help identify a subset of GBMs that are more dependent on exogenous growth factor–mediated signaling. Our results suggest the bioavailability of growth factors from the microenvironment is a significant contributor to tumor growth in a major subset of human GBM

    RNA Profiling of the Human and Mouse Spinal Cord Stem Cell Niches Reveals an Embryonic-like Regionalization with MSX1+ Roof-Plate-Derived Cells

    No full text
    Summary: Anamniotes, rodents, and young humans maintain neural stem cells in the ependymal zone (EZ) around the central canal of the spinal cord, representing a possible endogenous source for repair in mammalian lesions. Cell diversity and genes specific for this region are ill defined. A cellular and molecular resource is provided here for the mouse and human EZ based on RNA profiling, immunostaining, and fluorescent transgenic mice. This uncovered the conserved expression of 1,200 genes including 120 transcription factors. Unexpectedly the EZ maintains an embryonic-like dorsal-ventral pattern of expression of spinal cord developmental transcription factors (ARX, FOXA2, MSX1, and PAX6). In mice, dorsal and ventral EZ cells express Vegfr3 and are derived from the embryonic roof and floor plates. The dorsal EZ expresses a high level of Bmp6 and Gdf10 genes and harbors a subpopulation of radial quiescent cells expressing MSX1 and ID4 transcription factors. : A niche of stem cells is present around the central canal of the adult spinal cord. A better description of cell diversity and genes expressed in this niche may help to use it to promote spinal cord regeneration after lesions. In this article, based on several techniques, Ghazale and colleagues provide a cellular and molecular resource for the adult human and mouse stem cell niches. Keywords: spinal cord, niche, neural stem cells, regionalization, ependyma, ependymal cells, radial glial cells, transcription factors, Msx1, roof plate, floor plat

    Population Pharmacokinetics/Pharmacodynamics of Dabrafenib Plus Trametinib in Patients with BRAF-Mutated Metastatic Melanoma.

    No full text
    Patients treated with dabrafenib/trametinib (DAB/TRA) exhibit a large interindividual variability in clinical outcomes. The aims of this study were to characterize the pharmacokinetics of DAB, hydroxy-dabrafenib (OHD), and TRA in BRAF-mutated patients and to investigate the exposure-response relationship for toxicity and efficacy in metastatic melanoma (MM) patients. Univariate Fisher and Wilcoxon models including drug systemic exposure (area under the plasma concentration curve, AUC) were used to identify prognostic factors for the onset of dose-limiting toxicities (DLT), and Cox models for overall (OS) and progression-free survival (PFS). Seventy-three BRAF-mutated patients were included in pharmacokinetic (n = 424, NONMEM) and 52 in pharmacokinetic/pharmacodynamic analyses. Age and sex were identified as determinants of DAB and OHD clearances (p < 0.01). MM patients experiencing DLT were overexposed to DAB compared to patients without DLT (AUC: 9624 vs. 7485 ng∙h/mL, respectively, p < 0.01). Eastern Cooperative Oncology Group Performance Status (ECOG PS) ≥ 2 and plasma ratio AUC <sub>OHD</sub> /AUC <sub>DAB</sub> ≥ 1 were independently associated with shorter OS (HR: 6.58 (1.29-33.56); p = 0.023 and 10.61 (2.34-48.15), p = 0.022, respectively). A number of metastatic sites ≥3 and cerebral metastases were associated with shorter PFS (HR = 3.25 (1.11-9.50); p = 0.032 and HR = 1.23 (1.35-10.39), p = 0.011; respectively). TRA plasma exposure was neither associated with toxicity nor efficacy. Our results suggest that early drug monitoring could be helpful to prevent the onset of DLT in MM patients, especially in fragile patients such as the elderly. Regarding efficacy, the clinical benefit to monitor plasma ratio AUC <sub>OHD</sub> /AUC <sub>DAB</sub> deserves more investigation in a larger cohort of MM patients
    corecore