657 research outputs found

    Experimental investigation of geodesic acoustic modes on JET using Doppler backscattering

    Get PDF
    Geodesic acoustic modes (GAMs) have been investigated in JET ohmic discharges using mainly Doppler backscattering. Characteristics and scaling properties of the GAM are studied. Time and spatial resolved measurements of the perpendicular velocity indicate that GAMs are located in a narrow layer at the edge density gradient region with amplitude corresponding to about 50% of the mean local perpendicular velocity. GAMs on JET appear to be regulated by the turbulence drive rather than by their damping rate. It is also shown that the GAM amplitude is ~20% larger in deuterium than in hydrogen plasmas.EURATOM 633053Fundação para a Ciência e Tecnologia UID/FIS/50010/201

    Stationary Zonal Flows during the Formation of the Edge Transport Barrier in the JET Tokamak

    Get PDF
    High spatial resolution Doppler backscattering measurements in JET have enabled new insights into the development of the edge Er. We observe fine-scale spatial structures in the edge Er well with a wave number krρi ≈ 0.4–0.8, consistent with stationary zonal flows, the characteristics of which vary with density. The zonal flow amplitude and wavelength both decrease with local collisionality, such that the zonal flow E × B shear increases. Above the minimum of the L-H transition power threshold dependence on density, the zonal flows are present during L mode and disappear following the H-mode transition, while below the minimum they are reduced below measurable amplitude during L mode, before the L-H transitionEURATOM 63305

    The role of isotope mass and transport for H-mode access in tritium containing plasmas at JET with ITER-like wall

    Get PDF
    Special Issue Featuring the Invited Talks from the 48th EPS Conference on Plasma Physics, 27 June - 1 July 2022The required heating power, , to access the high confinement regime (H-mode) in tritium containing plasmas is investigated in JET with ITER-like wall at a toroidal magnetic field of T and a plasma current of MA. , also referred to as the L-H power threshold, is determined in plasmas of pure tritium as well as mixtures of hydrogen with tritium (H-T) and mixtures of deuterium with tritium (D-T), and is compared to the L-H power threshold in plasmas of pure hydrogen and pure deuterium. It is found that, for otherwise constant parameters, is not the same in plasmas with the same effective isotope mass, , when they differ in their isotope composition. Thus, is not sufficient to describe the isotope effect of in a consistent manner for all considered isotopes and isotope mixtures. The electron temperature profiles measured at the L-H transition in the outer half of the radius are very similar for all isotopes and isotope mixtures, despite the fact that the L-H power threshold varies by a factor of about six. This finding, together with the observation of an offset linear relation between the L-H power threshold, , and an effective heat diffusivity, , indicates that the composition-dependent heat transport in the low confinement mode (L-mode) determines, how much power is needed to reach the necessary electron temperatures at the edge, and hence PLH.This work has been carried out within the framework of the EUROfusion Consortium, funded by the European Union via the Euratom Research and Training Programme (Grant Agreement No. 101052200—EUROfusion). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Commission. Neither the European Union nor the European Commission can be held responsible for them. G Birkenmeier received funding from the Helmholtz Association under Grant No. VH-NG-1350Peer Reviewed"Article signat per 50 autors/es: G Birkenmeier, E R Solano, I S Carvalho, J C Hillesheim, E Delabie, E Lerche, D Taylor, D Gallart, M J Mantsinen, C Silva, C Angioni, F Ryter, P Carvalho, M Fontana, E Pawelec, S A Silburn, P Sirén, S Aleiferis, J Bernardo, A Boboc, D Douai, P Puglia, P Jacquet, E Litherland-Smith, I Jepu, D Kos, H J Sun, A Shaw, D King, B Viola, R Henriques, K K Kirov, M Baruzzo, J Garcia, A Hakola, A Huber, E Joffrin, D Keeling, A Kappatou, M Lennholm, P Lomas, E de la Luna, C F Maggi, J Mailloux, M Maslov, F G Rimini, N Vianello, G Verdoolaege, H Weisen, M Wischmeier and JET Contributors"Postprint (published version

    Gyrokinetic analysis and simulation of pedestals, to identify the culprits for energy losses using fingerprints

    Full text link
    Fusion performance in tokamaks hinges critically on the efficacy of the Edge Transport Barrier (ETB) at suppressing energy losses. The new concept of fingerprints is introduced to identify the instabilities that cause the transport losses in the ETB of many of today's experiments, from widely posited candidates. Analysis of the Gyrokinetic-Maxwell equations, and gyrokinetic simulations of experiments, find that each mode type produces characteristic ratios of transport in the various channels: density, heat and impurities. This, together with experimental observations of transport in some channel, or, of the relative size of the driving sources of channels, can identify or determine the dominant modes causing energy transport. In multiple ELMy H-mode cases that are examined, these fingerprints indicate that MHD-like modes are apparently not the dominant agent of energy transport; rather, this role is played by Micro-Tearing Modes (MTM) and Electron Temperature Gradient (ETG) modes, and in addition, possibly Ion Temperature Gradient (ITG)/Trapped Electron Modes (ITG/TEM) on JET. MHD-like modes may dominate the electron particle losses. Fluctuation frequency can also be an important means of identification, and is often closely related to the transport fingerprint. The analytical arguments unify and explain previously disparate experimental observations on multiple devices, including DIII-D, JET and ASDEX-U, and detailed simulations of two DIII-D ETBs also demonstrate and corroborate this
    corecore