4,702 research outputs found

    Seasonal variation in breast cancer diagnosis in Singapore

    Get PDF
    This study investigates seasonality in the diagnosis of 3219 female breast carcinoma cases reported between 1995–8 in Singapore. There is little evidence of marked seasonal variation. Angular regression suggested that observed differences in peak diagnosis with respect to menopausal status, tumour size, ER and PR status may be chance. © 2001 Cancer Research Campaign http://www.bjcancer.co

    Assessment of the variability of airborne contamination levels in an intensive care unit over a 24 hour period

    Get PDF
    Introduction: The objective of this study was to evaluate the variability in the dynamics and levels of airborne contamination within a hospital ICU in order to establish an improved understanding of the extent to which airborne bioburden contributes to cross-infection of patients. Microorganisms from the respiratory tract or skin can become airborne by coughing, sneezing and periods of increased activity such as bed changes and staff rounds. Current knowledge of the clinical microflora is limited however it is estimated that 10-33% of nosocomial infections are transmitted via air. Methods: Environmental air monitoring was conducted in Glasgow Royal Infirmary ICU, in the open ward and in patient isolation rooms. A sieve impactor air sampler was used to collect 500 L air samples every 15 minutes over 10 hour (08:00-18:00 h) and 24 hour (08:00-08:00 h) periods. Samples were collected, room activity logged and the bacterial contamination levels were recorded as CFU/m3 of air. Results: A high degree of variability in levels of airborne contamination was observed over the course of a 10 hour day and a 24 period in a hospital ICU. Counts ranged from 12-510 CFU/m3 over 24 hours in an isolation room occupied for 10 days by a patient with C. difficile infection. Contamination levels were found to be lowest during the night and in unoccupied rooms, with an average value of 20 CFU/m3. Peaks in airborne contamination showed a direct relation to an increase in room activity. Conclusions: This study demonstrates the degree of airborne contamination that can occur in an ICU over a 24 hour period. Numerous factors were found to contribute to microbial air contamination and consideration should be given to potential improved infection control strategies and decontamination technologies which could be deployed within the clinical environment to reduce the airborne contamination levels, with the ultimate aim of reducing healthcare-associated infections from environmental sources

    Evaluation of the airborne contamination levels in an intensive care unit over a 24 hour period

    Get PDF
    Airborne transmission of infectious microorganisms poses a critical threat to human health, particularly in the clinical setting where it is estimated that 10-33% of nosocomial infections are spread via the air. Within the clinical environment, microorganisms originating from the human respiratory tract or skin can become airborne by coughing and sneezing, and periods of increased activity such as bed and dressing changes, movement, staff rounds and visiting hours. Current knowledge of the clinical airborne microflora is limited and there is uncertainty surrounding the contribution of airborne microorganisms to the transmission of nosocomial infection. This study aims to establish an improved understanding of the variability in the dynamics and levels of airborne microbial contamination within an operational intensive care unit (ICU). Methods Environmental monitoring of airborne contamination levels was conducted in Glasgow Royal Infirmary ICU, in the open ward and in both occupied and unoccupied patient isolation rooms. Monitoring was performed using a sieve impactor air sampler, with 500 L air samples collected every 15 minutes over 10 hour (08:00-18:00 h) and 24 hour (08:00-08:00 h) periods. Samples were collected on tryptone soya agar (TSA) plates, and the bacterial contamination levels were recorded as CFU/m3 of air. An activity log was also collated over the 10 hour and 24 hour sampling periods in order to record any activity occurring in the ward/room that might contribute to spikes in airborne contamination levels. Results Results highlight the degree of variability in levels of airborne contamination over the course of both a working day and a 24 hour period in a hospital ICU. A high degree of variability was observed across the 24 hour period, with counts ranging from 12-510 CFU/m3 in one study in an occupied patient room. Peaks in airborne contamination showed a direct relation to an increase in room activity. Monitoring found contamination levels to be lower overall during the night, and in unoccupied isolation rooms, with an average value of 20 CFU/m3. The highest counts were observed in an isolation room occupied for 10 days by a patient with C. difficile infection which generated an average microbial load of 104 CFU/m3 and a peak value of 510 CFU/m3. Discussion This study has demonstrated the degree of airborne contamination that can occur in the ICU environment over a 24 hour period. Numerous factors were found to contribute to the microbial air contamination levels, including patient status, length of room occupation, time of day and room activity, and further work is required to establish the extent to which this airborne bioburden contributes to cross-infection of patients

    Simple model for decay of superdeformed nuclei

    Full text link
    Recent theoretical investigations of the decay mechanism out of a superdeformed nuclear band have yielded qualitatively different results, depending on the relative values of the relevant decay widths. We present a simple two-level model for the dynamics of the tunneling between the superdeformed and normal-deformed bands, which treats decay and tunneling processes on an equal footing. The previous theoretical results are shown to correspond to coherent and incoherent limits of the full tunneling dynamics. Our model accounts for experimental data in both the A~150 mass region, where the tunneling dynamics is coherent, and in the A~190 mass region, where the tunneling dynamics is incoherent.Comment: 4 page

    Spreading Width for Decay out of a Superdeformed Band

    Get PDF
    The attenuation factor F responsible for the decay out of a superdeformed (SD) band is calculated with the help of a statistical model. This factor is given by 1/F = (1 + Gamma(down) / Gamma(S)). Here, Gamma(S) is the width for the collective E2 transition within the superdeformed band, and Gamma(down) is the spreading width which describes the mixing between a state in the SD band and the normally deformed (ND) states of equal spin. The attenuation factor F is independent of the statistical E1 decay widths Gamma(N) of the ND states provided that the Gamma(N) are much larger than both Gamma(down) and Gamma(S). This condition is generically met. Previously measured values of F are used to determine Gamma(down).Comment: Submitted to Physical Review Letter

    Stability of blended palm oils during potato frying

    Get PDF
    The aim of this study was to determine hydrolytic stability [acid value (AV)] and oxidative stability [peroxide value (PV) and conjugated dienes (CD)] of selected blended oils during potato frying. The blended oils were prepared by blending palm oil with corn oil (POCO), sesame oil (POSO) and rice bran oil (PORBO). Blended vegetable oils were prepared in a ratio of 1 to 1 (v/v) and tested for 0, 10 and 20 times after frying potato. AV and PV were determined by titration method, while CD was determined using the spectrophotometric method. Increasing frequency of oil frying contributed to increased level of AV in all blended oils. PVs were increased in all samples, with most noticeable increment observed in POSO, followed by PORBO and POCO. CD levels of the blended oils were also increased after 20 times of potato frying compared with the unused oil and after 10 times of frying. POCO was the most stable oil in terms of hydrolytic and oxidative stabilities. It is most suitable for deep-fat frying of potato chips and industrial application

    Continuous monitoring of aerial bioburden within intensive care isolation rooms and identification of 'high risk' activities

    Get PDF
    Background: The spread of pathogens via the airborne route is often underestimated and little is known about the extent to which airborne microbial contamination levels vary throughout the day and night in hospital facilities. Aims: This study aims to evaluate variability in airborne contamination levels within ICU isolation rooms over extended time periods to improve understanding of the extent to which ward activities, and consequential increases in airborne bioburden, may contribute to cross-infection of patients. Methods: Environmental air monitoring was conducted within occupied and vacant inpatient isolation rooms. A sieve impactor sampler was used to collect 500 L air samples every 15 minutes over 10-hour (08:00-18:00 h) and 24-hour (08:00-08:00 h) periods. Samples were collected, room activity logged, and the bacterial contamination levels were recorded as cfu/m3 of air. Findings: A high degree of variability in levels of airborne contamination was observed across all scenarios in the studied isolation rooms. Air bioburden increased as room occupancy increased, with air contamination levels highest in rooms occupied for the longest time during the study (10 days) with a mean value of 104.4 cfu/m3 and a range of 12–510 cfu/m3. Counts were lowest in unoccupied rooms, with an average value of 20 cfu/m3 and during the night. Conclusion: Peaks in airborne contamination showed a direct relation to an increase in activity levels. This study provides first clear evidence of the extent of variability in microbial airborne levels over 24-hour periods in ICU isolation rooms and directly correlates microbial load to ward activity

    Co-existing structures in 105Ru

    Full text link
    New positive-parity states, having a band-like structure, were observed in 105Ru. The nucleus was produced in induced fission reaction and the prompt gamma-rays, emitted from the fragments, were detected by the EUROBALL III multi-detector array. The partial scheme of excited 105Ru levels is analyzed within the Triaxial-Rotor-plus-Particle approach
    corecore