18 research outputs found

    Cosmological constant in SUGRA models and the multiple point principle

    Full text link
    The tiny order of magnitude of the cosmological constant is sought to be explained in a model involving the following ingredients: supersymmetry breaking in N=1 supergravity and the multiple point principle. We demonstrate the viability of this scenario in the minimal SUGRA model.Comment: 18 pages, 2 figures, Talk given at Nuclear Physics Department of the Russian Academy of Sciences (RAS) Conference on Physics of Fundamental Interactions, Moscow, Russia, 2-6 Dec 2002; to appear in Phys.Atom.Nuc

    �ber eine limnologische Bedeutung der freien Kohlens�ure

    No full text

    Sensitive method for endotoxin determination in nanomedicinal product samples.

    No full text
    Aim: Nanomaterials and nanomedicinal products tend to interfere with various commonly used assays, including regulatory required endotoxin detection methods for medicines. We developed a method to quantify endotoxin levels that is compatible with nanomaterials and nanomedicinal products. Materials & methods: The method is based on measuring endotoxin indirectly via 3-hydroxylated fatty acids of lipid-A, using Ultra High Performance Liquid Chromatography coupled with mass spectrometry. The outcome was related to results of the commonly used Limulus Amebocyte Lysate method. Results: The ultra high performance liquid chromatography coupled with mass spectrometry method has clear advantages compared with other endotoxin determination assays; particularly the absence of nanospecific interference. Conclusion: The method is sensitive, straightforward and accurate in determining and quantifying endotoxin in nanomedicinal product samples

    Sensitive method for endotoxin determination in nanomedicinal product samples.

    No full text
    Aim: Nanomaterials and nanomedicinal products tend to interfere with various commonly used assays, including regulatory required endotoxin detection methods for medicines. We developed a method to quantify endotoxin levels that is compatible with nanomaterials and nanomedicinal products. Materials & methods: The method is based on measuring endotoxin indirectly via 3-hydroxylated fatty acids of lipid-A, using Ultra High Performance Liquid Chromatography coupled with mass spectrometry. The outcome was related to results of the commonly used Limulus Amebocyte Lysate method. Results: The ultra high performance liquid chromatography coupled with mass spectrometry method has clear advantages compared with other endotoxin determination assays; particularly the absence of nanospecific interference. Conclusion: The method is sensitive, straightforward and accurate in determining and quantifying endotoxin in nanomedicinal product samples
    corecore