340 research outputs found

    Jacobi-like bar mode instability of relativistic rotating bodies

    Full text link
    We perform some numerical study of the secular triaxial instability of rigidly rotating homogeneous fluid bodies in general relativity. In the Newtonian limit, this instability arises at the bifurcation point between the Maclaurin and Jacobi sequences. It can be driven in astrophysical systems by viscous dissipation. We locate the onset of instability along several constant baryon mass sequences of uniformly rotating axisymmetric bodies for compaction parameter M/R=0−0.275M/R = 0-0.275. We find that general relativity weakens the Jacobi like bar mode instability, but the stabilizing effect is not very strong. According to our analysis the critical value of the ratio of the kinetic energy to the absolute value of the gravitational potential energy (T/∣W∣)crit(T/|W|)_{\rm crit} for compaction parameter as high as 0.275 is only 30% higher than the Newtonian value. The critical value of the eccentricity depends very weakly on the degree of relativity and for M/R=0.275M/R=0.275 is only 2% larger than the Newtonian value at the onset for the secular bar mode instability. We compare our numerical results with recent analytical investigations based on the post-Newtonian expansion.Comment: 15 pages, 8 figures, submitted to Phys. Rev.

    Are rotating strange quark stars good sources of gravitational waves?

    Full text link
    We study the viscosity driven (Jacobi-like) bar mode instability of rapidly rotating strange stars in general relativity. A triaxial, "bar shaped" compact star could be an efficient source of continuous wave gravitational radiation in the frequency range of the forthcoming interferometric detectors. We locate the secular instability point along several constant baryon mass sequences of uniformly rotating strange stars described by the MIT bag model. Contrary to neutron stars, strange stars with T/|W| (the ratio of the rotational kinetic energy to the absolute value of the gravitational potential energy) much lower than the corresponding value for the mass-shed limit can be secularly unstable to bar mode formation if shear viscosity is high enough to damp out any deviation from uniform rotation. The instability develops for a broad range of gravitational masses and rotational frequencies of strange quark stars. It imposes strong constraints on the lower limit of the frequency at the innermost stable circular orbit around rapidly rotating strange stars. The above results are robust for all linear self-bound equations of state assuming the growth time of the instability is faster than the damping timescale. We discuss astrophysical scenarios where triaxial instabilities (r-mode and viscosity driven instability) could be relevant in strange stars described by the standard MIT bag model of normal quark matter. Taking into account actual values of viscosities in strange quark matter and neglecting the magnetic field we show that Jacobi-like instability cannot develop in any astrophysicaly interesting temperature windows. The main result is that strange quark stars described by the MIT bag model can be accelerated to very high frequency in Low Mass X-ray binaries if the strange quark mass is ~ 200 MeV or higher.Comment: 15 pages, 10 figures, to appear in Astronomy and Astrophysic

    Last orbits of binary strange quark stars

    Get PDF
    We present the first relativistic calculations of the final phase of inspiral of a binary system consisting of two stars built predominantely of strange quark matter (strange quark stars). We study the precoalescing stage within the Isenberg-Wilson-Mathews approximation of general relativity using a multidomain spectral method. A hydrodynamical treatment is performed under the assumption that the flow is either rigidly rotating or irrotational, taking into account the finite density at the stellar surface -- a distinctive feature with respect to the neutron star case. The gravitational-radiation driven evolution of the binary system is approximated by a sequence of quasi-equilibrium configurations at fixed baryon number and decreasing separation. We find that the innermost stable circular orbit (ISCO) is given by an orbital instability both for synchronized and irrotational systems. This constrasts with neutron stars for which the ISCO is given by the mass-shedding limit in the irrotational case. The gravitational wave frequency at the ISCO, which marks the end of the inspiral phase, is found to be 1400 Hz for two irrotational 1.35 Msol strange stars and for the MIT bag model of strange matter with massless quarks and a bag constant B=60 MeV/fm^3. Detailed comparisons with binary neutrons star models, as well as with third order Post-Newtonian point-mass binaries are given.Comment: 11 pages, 10 figures, improved conclusion and figures, references added, accepted for publication in Phys. Rev.

    The influence of repeated cold water immersion on adaptations to strength and power training

    Get PDF
    Introduction Cold Water Immersion (CWI) is a popular recovery strategy utilised by athletes in order to attenuate the negative influence of strenuous exercise on subsequent performance. One of the proposed physiological mechanisms underpinning the use of CWI is the potential to limit the inflammatory response after acute exercise. Given that the inflammatory cascade ultimately leads to muscle regeneration and repair, it is pertinent to investigate the longer term impact of regular cryotherapy exposure on adaptations to strength and power training. Methods Thirteen resistance trained males (mean age 25.8 ± 5.5 years; height 1.8 ± 0.1 m; mass 83.6 ± 15.7 kg; 4RM back squat 146.2 ± 38.5 kg) completed an 8 week (1 x 4 week strength and 1 x 4 week power block) lower body resistance training program. Participants were match-paired into either the CWI (10 min at 10° ± 0.5°) or placebo group based on a ratio of lean mass to 4RM back squat. Participants completed 2 training sessions per week and completed their allocated recovery intervention after each training session. Measures of muscle fibre pennation angle, maximal voluntary isometric contraction (MVIC) at 90°, peak torque of the knee extensors (60deg∙s), and isometric squat parameters (peak force and rate of force development (RFD))were measured at baseline, midpoint and post training intervention. Results were analysed using magnitude based inferences. Results At the post testing session, CWI demonstrated a likely moderate harmful effect on muscle fibre pennation angle compared to the placebo group (CWI: 11.4; ±4.8%; placebo: 21.5; ±8.4%). However, CWI demonstrated a likely large beneficial effect on peak torque (60deg∙s) compared to the placebo group (CWI: 7.5; ±6.5%; placebo: -2.4; ±4.0%) at midpoint. There were trivial differences between groups for isometric peak force and peak torque (60deg∙s) from baseline to post. All other effects were unclear. Discussion The greater increase in muscle fibre pennation angle in the placebo group compared to the CWI group would indicate a greater increase lean muscle mass. However, CWI still demonstrated a positive impact on peak torque at 60 deg∙s compared to the placebo group. Blood sample analyses are ongoing and may offer further insight into the underpinning mechanisms. Further investigation is warranted to better understand the potential negative impact of repeated cryotherapy exposure on functional adaptations to strength and power training stimuli

    Whole body cryotherapy, cold water immersion, or a placebo following resistance exercise: a case of mind over matter?

    Get PDF
    PURPOSE: The use of cryotherapy as a recovery intervention is prevalent amongst athletes. Performance of high volume, heavy load resistance exercise is known to result in disturbances of muscle function, perceptual responses and blood borne parameters. Therefore, this study investigated the influence of cold water immersion (CWI), whole body cryotherapy (WBC) or a placebo (PL) intervention on markers of recovery following an acute resistance training session. METHODS: 24 resistance trained males were matched into a CWI (10 min at 10 °C), WBC (3- and 4 min at - 85 °C) or PL group before completing a lower body resistance training session. Perceptions of soreness and training stress, markers of muscle function, inflammation and efflux of intracellular proteins were assessed before, and up to 72 h post exercise. RESULTS: The training session resulted in increased soreness, disturbances of muscle function, and increased inflammation and efflux of intracellular proteins. Although WBC attenuated soreness at 24 h, and positively influenced peak force at 48 h compared to CWI and PL, many of the remaining outcomes were trivial, unclear or favoured the PL condition. With the exception of CRP at 24 h, neither cryotherapy intervention attenuated the inflammatory response compared to PL. CONCLUSION: There was some evidence to suggest that WBC is more effective than CWI at attenuating select perceptual and functional responses following resistance training. However, neither cryotherapy intervention was more effective than the placebo treatment at accelerating recovery. The implications of these findings should be carefully considered by individuals employing cryotherapy as a recovery strategy following heavy load resistance training

    Stability of strange stars (SS) derived from a realistic equation of state

    Get PDF
    A realistic equation of state (EOS) leads to realistic strange stars (ReSS) which are compact in the mass radius plot, close to the Schwarzchild limiting line (Dey et al 1998). Many of the observed stars fit in with this kind of compactness, irrespective of whether they are X-ray pulsars, bursters or soft γ\gamma repeaters or even radio pulsars. We point out that a change in the radius of a star can be small or large, when its mass is increasing and this depends on the position of a particular star on the mass radius curve. We carry out a stability analysis against radial oscillations and compare with the EOS of other strange star (SS) models. We find that the ReSS is stable and an M-R region can be identified to that effect.Comment: 16 pages including 5 figures. Accepted for publication in MPL
    • …
    corecore