223 research outputs found

    Advectional enhancement of eddy diffusivity under parametric disorder

    Full text link
    Frozen parametric disorder can lead to appearance of sets of localized convective currents in an otherwise stable (quiescent) fluid layer heated from below. These currents significantly influence the transport of an admixture (or any other passive scalar) along the layer. When the molecular diffusivity of the admixture is small in comparison to the thermal one, which is quite typical in nature, disorder can enhance the effective (eddy) diffusivity by several orders of magnitude in comparison to the molecular diffusivity. In this paper we study the effect of an imposed longitudinal advection on delocalization of convective currents, both numerically and analytically; and report subsequent drastic boost of the effective diffusivity for weak advection.Comment: 14 pages, 6 figures, for Topical Issue of Physica Scripta "2nd Intl. Conf. on Turbulent Mixing and Beyond

    Bunching of fluxons by the Cherenkov radiation in Josephson multilayers

    Get PDF
    A single magnetic fluxon moving at a high velocity in a Josephson multilayer (e.g., high-temperature superconductor such as BSCCO) can emit electromagnetic waves (Cherenkov radiation), which leads to formation of novel stable dynamic states consisting of several bunched fluxons. We find such bunched states in numerical simulation in the simplest cases of two and three coupled junctions. At a given driving current, several different bunched states are stable and move at velocities that are higher than corresponding single-fluxon velocity. These and some of the more complex higher-order bunched states and transitions between them are investigated in detail.Comment: 6 pages + 6 Figures, to be published in Phys. Rev. B on July 1, 200

    Cherenkov radiation from fluxon in a stack of coupled long Josephson junctions

    Full text link
    We present a systematic study of the Cherenkov radiation of Josephson plasma waves by fast moving fluxon in a stack of coupled long Josephson junctions for different fluxon modes. It is found that at some values of parameters current-voltage characteristic may exhibit a region of the back-bending on the fluxon step. In the opposite limit the emission of the Cherenkov radiation takes place. In the annular junctions of moderate length the interaction of the emitted waves with fluxon results in the novel resonances which emerge on the top of the fluxon step. We present more exact formulas which describe the position of such resonances taking into account difference between junction and non-linear corrections. The possibility of direct detection of the Cherenkov radiation in junctions of linear geometry is discussed.Comment: 10 pages, 12 figures, accepted to JLT

    Maximum velocity of a fluxon in a stack of coupled Josephson junctions

    Full text link
    Dynamics of a fluxon in a stack of inductively coupled long Josephson junctions is studied analytically and numerically. We demonstrate that the fluxon has a maximum velocity, which does not necessarily coincide with any of the characteristic Josephson plasma wave velocities. The maximum fluxon velocity is found by means of numerical simulations of the quasi-infinite system. Using the variational approximation, we propose a simple analytical formula for the dependence of the fluxon's maximum velocity on the coupling constant and on the distribution of critical currents in different layers. This analysis yields rather precise results in the limit of small dissipation. The simulations also show that nonzero dissipation additionally stabilizes the fluxon.Comment: 8 pages, 5 figures, 1 table. submitted to Phys. Lett. A. Suggestions and criticism are welcom

    Semifluxons in Superconductivity and Cold Atomic Gases

    Full text link
    Josephson junctions and junction arrays are well studied devices in superconductivity. With external magnetic fields one can modulate the phase in a long junction and create traveling, solitonic waves of magnetic flux, called fluxons. Today, it is also possible to device two different types of junctions: depending on the sign of the critical current density, they are called 0- or pi-junction. In turn, a 0-pi junction is formed by joining two of such junctions. As a result, one obtains a pinned Josephson vortex of fractional magnetic flux, at the 0-pi boundary. Here, we analyze this arrangement of superconducting junctions in the context of an atomic bosonic quantum gas, where two-state atoms in a double well trap are coupled in an analogous fashion. There, an all-optical 0-pi Josephson junction is created by the phase of a complex valued Rabi-frequency and we a derive a discrete four-mode model for this situation, which qualitatively resembles a semifluxon.Comment: 15 pages (Latex), 6 color figures (eps
    corecore