2,106 research outputs found

    Evidence of Confinement of Solar-energetic Particles to Interplanetary Magnetic Field Lines

    Get PDF
    We present new observations of solar-energetic particles (SEPs) associated with impulsive solar flares that show evidence for their confinement to interplanetary magnetic field lines. Some SEP events exhibit intermittent intensity dropouts becausemagnetic field lines filledwith and empty of particle flux mix together. The edges of these dropouts are observed to be very sharp, suggesting that particles cannot easily move from a filled to an empty field line in the time available during their transport from the Sun. In this paper, we perform high time-resolution observations of intensity fall-off at the edges of observed SEP dropouts in order to look for signatures of particle motion off field lines. However, the statistical study is dominated by one particularly intense event. The inferred length scale of the intensity decay is comparable to the gyroradii of the particles, suggesting that particles only rarely scatter off magnetic field lines during interplanetary transport

    Effects of interplanetary transport on derived energetic particle source strengths

    Get PDF
    We study the transport of solar energetic particles (SEPs) in the inner heliosphere in order to relate observations made by an observer at 1 AU to the number and total energy content of accelerated particles at the source, assumed to be near the Sun. We use a numerical simulation that integrates the trajectories of a large number of individual particles moving in the interplanetary magnetic field. We model pitch angle scattering and adiabatic cooling of energetic ions with energies from 50 keV nucleon^(−1) to 100 MeV nucleon^(−1). Among other things, we determine the number of times that particles of a given energy cross 1 AU and the average energy loss that they suffer because of adiabatic deceleration in the solar wind. We use a number of different forms of the interplanetary spatial diffusion coefficient and a wide range of scattering mean-free paths and consider a number of different ion species in order to generate a wide range of simulation results that can be applied to individual SEP events. We apply our simulation results to observations made at 1 AU of the 20 February 2002 solar energetic particle event, finding the original energy content of several species. We find that estimates of the source energy based on SEP measurements at 1 AU are relatively insensitive to the mean-free path and scattering scheme if adiabatic cooling and multiple crossings are taken into account

    The mixing of interplanetary magnetic field lines: A significant transport effect in studies of the energy spectra of impulsive flares

    Get PDF
    Using instrumentation on board the ACE spacecraft we describe short-time scale (~3 hour) variations observed in the arrival profiles of ~20 keV nucleon^(–1) to ~2 MeV nucleon^(–1) ions from impulsive solar flares. These variations occurred simultaneously across all energies and were generally not in coincidence with any local magnetic field or plasma signature. These features appear to be caused by the convection of magnetic flux tubes past the observer that are alternately filled and devoid of flare ions even though they had a common flare source at the Sun. In these particle events we therefore have a means to observe and measure the mixing of the interplanetary magnetic field due to random walk. In a survey of 25 impulsive flares observed at ACE between 1997 November and 1999 July these features had an average time scale of 3.2 hours, corresponding to a length of ~0.03 AU. The changing magnetic connection to the flare site sometimes lead to an incomplete observation of a flare at 1 AU; thus the field-line mixing is an important effect in studies of impulsive flare energy spectra

    OLIVE FRUIT FLY: A threat to the South African olive industry?

    Get PDF
    Olive fruit fly (Bactrocera oleae) is the most serious pest of cultivated olives in the Mediterranean basin. to date we have not seen the same level of damage in south africa, but the question remained whether it poses a similar threat as the local olive industry expands. From this study it is clear that the climatic con- ditions during the period preceding harvest are un- favourable for rapid population growth of OFF in the Western Cape, in contrast to conditions in the coastal area of Trapani province in Sicily. Climate, and not parasitism, appears to be the main factor limiting OFF population levels in the Western Cape. While sporadic outbreaks of economically damaging OFF infestations can be expected in areas where the climatic conditions during a particular season or part of a season are favourable for OFF, the generally un- favourable climatic conditions mean that OFF is not expected to pose a similar threat to olive production in the Western Cape as it does in the Mediterranean basin

    Dynamical effects of self-generated magnetic fields in cosmic ray modified shocks

    Full text link
    Recent observations of greatly amplified magnetic fields (δB/B100\delta B/B\sim 100) around supernova shocks are consistent with the predictions of the non-linear theory of particle acceleration (NLT), if the field is generated upstream of the shock by cosmic ray induced streaming instability. The high acceleration efficiencies and large shock modifications predicted by NLT need however to be mitigated to confront observations, and this is usually assumed to be accomplished by some form of turbulent heating. We show here that magnetic fields with the strength inferred from observations have an important dynamical role on the shock, and imply a shock modification substantially reduced with respect to the naive unmagnetized case. The effect appears as soon as the pressure in the turbulent magnetic field becomes comparable with the pressure of the thermal gas. The relative importance of this unavoidable effect and of the poorly known turbulent heating is assessed. More specifically we conclude that even in the cases in which turbulent heating may be of some importance, the dynamical reaction of the field cannot be neglected, as instead is usually done in most current calculations.Comment: 4 pages, 1 figure, accepted for publication in ApJ Letter

    Unlocking Plum Genetic Potential: Where Are We At?

    Get PDF
    Plums are a large group of closely related stone fruit species and hybrids of worldwide economic importance and diffusion. This review deals with the main aspects concerning plum agrobiodiversity and its relationship with current and potential contributions offered by breeding in enhancing plum varieties. The most recent breeding achievements are revised according to updated information proceeding from relevant scientific reports and official inventories of plum genetic resources. A special emphasis has been given to the potential sources of genetic traits of interest for breeding programs as well as to the need for efficient and coordinated efforts aimed at efficaciously preserving the rich and underexploited extant plum agrobiodiversity. The specific objective of this review was to: (i) analyze and possibly evaluate the degree of biodiversity existing in the cultivated plum germplasm, (ii) examine the set of traits of prominent agronomic and pomological interest currently targeted by the breeders, and (iii) determine how and to what extent this germplasm was appropriately exploited in breeding programs or could represent concrete prospects for the future

    Interplanetary magnetic field line mixing deduced from impulsive solar flare particles

    Get PDF
    We have studied fine-scale temporal variations in the arrival profiles of ~20 keV nucleon^(-1) to ~2 MeV nucleon^(-1) ions from impulsive solar flares using instrumentation on board the Advanced Composition Explorer spacecraft at 1 AU between 1997 November and 1999 July. The particle events often had short-timescale (~3 hr) variations in their intensity that occurred simultaneously across all energies and were generally not in coincidence with any local magnetic field or plasma signature. These features appear to be caused by the convection of magnetic flux tubes past the observer that are alternately filled and devoid of flare ions even though they had a common flare source at the Sun. Thus, we have used the particles to study the mixing of the interplanetary magnetic field that is due to random walk. We deduce an average timescale of 3.2 hr for these features, which corresponds to a length of ~0.03 AU

    Local spatio-temporal encoding of raw perfusion MRI for the prediction of final lesion in stroke

    Get PDF
    We address the medical image analysis issue of predicting the final lesion in stroke from early perfusion magnetic resonance imaging. The classical processing approach for the dynamical perfusion images consists in a temporal deconvolution to improve the temporal signals associated with each voxel before performing prediction. We demonstrate here the value of exploiting directly the raw perfusion data by encoding the local environment of each voxel as a spatio-temporal texture, with an observation scale larger than the voxel. As a first illustration for this approach, the textures are characterized with local binary patterns and the classification is performed using a standard support vector machine (SVM). This simple machine learning classification scheme demonstrates results with 95% accuracy on average while working only raw perfusion data. We discuss the influence of the observation scale and evaluate the interest of using post-processed perfusion data with this approach
    corecore