179 research outputs found
CONSIDERATIONS ON OBTAINING CAMELINA OIL BY COLD PRESSING
The oil obtained from oil plants have characteristics and properties that allow use for people food, animals and in some cases alternative fuel engines. Camelina is an oil plant that has properties superior to other known plants: sunflower, soybean, flax, etc., to be used as fuel, the paper presenting some considerations that make this plant as an alternative to fossil fuels
XM02 is superior to placebo and equivalent to Neupogen™ in reducing the duration of severe neutropenia and the incidence of febrile neutropenia in cycle 1 in breast cancer patients receiving docetaxel/doxorubicin chemotherapy
Abstract Background Recombinant granulocyte colony-stimulating factors (G-CSFs) such as Filgrastim are used to treat chemotherapy-induced neutropenia. We investigated a new G-CSF, XM02, and compared it to Neupogen™ after myelotoxic chemotherapy in breast cancer (BC) patients. Methods A total of 348 patients with BC receiving docetaxel/doxorubicin chemotherapy were randomised to treatment with daily injections (subcutaneous 5 μg/kg/day) for at least 5 days and a maximum of 14 days in each cycle of XM02 (n = 140), Neupogen™ (n = 136) or placebo (n = 72). The primary endpoint was the duration of severe neutropenia (DSN) in cycle 1. Results The mean DSN in cycle 1 was 1.1, 1.1, and 3.9 days in the XM02, Neupogen™, and placebo group, respectively. Superiority of XM02 over placebo and equivalence of XM02 with Neupogen™ could be demonstrated. Toxicities were similar between XM02 and Neupogen™. Conclusion XM02 was superior to placebo and equivalent to Neupogen™ in reducing DSN after myelotoxic chemotherapy. Trial Registration Current Controlled Trials ISRCTN02270769</p
Phytochemical profile, antioxidant capacity and wound healing potential of Viscum album L. growing on Robinia pseudoacacia L.
Mistletoe (Viscum album L.), a semi-parasitic medicinal plant, continues to be of interest, due to its phytochemical composition. The leaves of mistletoe contain phenols, which have a variety of biological effects. The main goal was to characterize the mistletoe that parasitized Robinia pseudoacacia L., (called VAR) in terms of phenolic compounds and to assess the wound healing potential in vitro using the scratch method. Furthermore, the antioxidant capacity was evaluated both by spectrophotometric techniques (DPPH, FRAP, TEAC), as well as by the ability of the mistletoe extract to synthesize green selenium nanoparticles. Among the phenolic acids, dihydroxybenzoic acid is in high level (2.86±0.03 mg/g dw), whereas isorhamnetin-glucuronides dominate the flavonol class (0.593±0.03 mg/g dw). The presence of phenolic compounds in the VAR leaves provides antioxidant capacity. The reducing capacity of VAR extract was demonstrated for the first time by the biosynthesis of nanoselenium particles (NSePs) with a regular, spherical shape and a diameter of around 130 nm. The VAR concentrations of 25-200 µg/mL showed no toxic effect on normal human dermal fibroblasts (NHDF), and the concentration of 100 µg/mL exhibited the best percentage of wound surface closure in vitro (94.08%). The results show that mistletoe is a promising plant because of its phytochemical composition and antioxidant capacity, which can modulate the wound repair process in vitro
Acute Hypoglycemia Induces Retinal Cell Death in Mouse
BACKGROUND: Glucose is the most important metabolic substrate of the retina and maintenance of normoglycemia is an essential challenge for diabetic patients. Glycemic excursions could lead to cardiovascular disease, nephropathy, neuropathy and retinopathy. A vast body of literature exists on hyperglycemia namely in the field of diabetic retinopathy, but very little is known about the deleterious effect of hypoglycemia. Therefore, we decided to study the role of acute hypoglycemia in mouse retina. METHODOLOGY/PRINCIPAL FINDINGS: To test effects of hypoglycemia, we performed a 5-hour hyperinsulinemic/hypoglycemic clamp; to exclude an effect of insulin, we made a hyperinsulinemic/euglycemic clamp as control. We then isolated retinas from each group at different time-points after the clamp to analyze cells apoptosis and genes regulation. In parallel, we used 661W photoreceptor cells to confirm in vivo results. We showed herein that hypoglycemia induced retinal cell death in mouse via caspase 3 activation. We then tested the mRNA expression of glutathione transferase omega 1 (Gsto1) and glutathione peroxidase 3 (Gpx3), two genes involved in glutathione (GSH) homeostasis. The expression of both genes was up-regulated by low glucose, leading to a decrease of reduced glutathione (GSH). In vitro experiments confirmed the low-glucose induction of 661W cell death via superoxide production and activation of caspase 3, which was concomitant with a decrease of GSH content. Moreover, decrease of GSH content by inhibition with buthionine sulphoximine (BSO) at high glucose induced apoptosis, while complementation with extracellular glutathione ethyl ester (GSHee) at low glucose restored GSH level and reduced apoptosis. CONCLUSIONS/SIGNIFICANCE: We showed, for the first time, that acute insulin-induced hypoglycemia leads to caspase 3-dependant retinal cell death with a predominant role of GSH content
Pathway-Based Evaluation in Early Onset Colorectal Cancer Suggests Focal Adhesion and Immunosuppression along with Epithelial-Mesenchymal Transition
Colorectal cancer (CRC) has one of the highest incidences among all cancers. The majority of CRCs are sporadic cancers that occur in individuals without family histories of CRC or inherited mutations. Unfortunately, whole-genome expression studies of sporadic CRCs are limited. A recent study used microarray techniques to identify a predictor gene set indicative of susceptibility to early-onset CRC. However, the molecular mechanisms of the predictor gene set were not fully investigated in the previous study. To understand the functional roles of the predictor gene set, in the present study we applied a subpathway-based statistical model to the microarray data from the previous study and identified mechanisms that are reasonably associated with the predictor gene set. Interestingly, significant subpathways belonging to 2 KEGG pathways (focal adhesion; natural killer cell-mediated cytotoxicity) were found to be involved in the early-onset CRC patients. We also showed that the 2 pathways were functionally involved in the predictor gene set using a text-mining technique. Entry of a single member of the predictor gene set triggered a focal adhesion pathway, which confers anti-apoptosis in the early-onset CRC patients. Furthermore, intensive inspection of the predictor gene set in terms of the 2 pathways suggested that some entries of the predictor gene set were implicated in immunosuppression along with epithelial-mesenchymal transition (EMT) in the early-onset CRC patients. In addition, we compared our subpathway-based statistical model with a gene set-based statistical model, MIT Gene Set Enrichment Analysis (GSEA). Our method showed better performance than GSEA in the sense that our method was more consistent with a well-known cancer-related pathway set. Thus, the biological suggestion generated by our subpathway-based approach seems quite reasonable and warrants a further experimental study on early-onset CRC in terms of dedifferentiation or differentiation, which is underscored in EMT and immunosuppression
Ubiquitous presence of gluconeogenic regulatory enzyme, fructose-1,6-bisphosphatase, within layers of rat retina
To shed some light on gluconeogenesis in mammalian retina, we have focused on fructose-1,6-bisphosphatase (FBPase), a regulatory enzyme of the process. The abundance of the enzyme within the layers of the rat retina suggests that, in mammals in contrast to amphibia, gluconeogenesis is not restricted to one specific cell of the retina. We propose that FBPase, in addition to its gluconeogenic role, participates in the protection of the retina against reactive oxygen species. Additionally, the nuclear localization of FBPase and of its binding partner, aldolase, in the retinal cells expressing the proliferation marker Ki-67 indicates that these two gluconeogenic enzymes are involved in non-enzymatic nuclear processes
Protective Intestinal Effects of Pituitary Adenylate Cyclase Activating Polypeptide
Pituitary adenylate cyclase activating polypeptide (PACAP) is an
endogenous neuropeptide widely distributed throughout the body, including the
gastrointestinal tract. Several effects have been described in human and animal
intestines. Among others, PACAP infl uences secretion of intestinal glands, blood
fl ow, and smooth muscle contraction. PACAP is a well-known cytoprotective peptide
with strong anti-apoptotic, anti-infl ammatory, and antioxidant effects. The
present review gives an overview of the intestinal protective actions of this neuropeptide.
Exogenous PACAP treatment was protective in a rat model of small bowel
autotransplantation. Radioimmunoassay (RIA) analysis of the intestinal tissue showed that endogenous PACAP levels gradually decreased with longer-lasting
ischemic periods, prevented by PACAP addition. PACAP counteracted deleterious
effects of ischemia on oxidative stress markers and cytokines. Another series of
experiments investigated the role of endogenous PACAP in intestines in PACAP
knockout (KO) mice. Warm ischemia–reperfusion injury and cold preservation models
showed that the lack of PACAP caused a higher vulnerability against ischemic
periods. Changes were more severe in PACAP KO mice at all examined time points.
This fi nding was supported by increased levels of oxidative stress markers and
decreased expression of antioxidant molecules. PACAP was proven to be protective
not only in ischemic but also in infl ammatory bowel diseases. A recent study showed
that PACAP treatment prolonged survival of Toxoplasma gondii infected mice suffering
from acute ileitis and was able to reduce the ileal expression of proinfl ammatory
cytokines. We completed the present review with recent clinical results obtained
in patients suffering from infl ammatory bowel diseases. It was found that PACAP
levels were altered depending on the activity, type of the disease, and antibiotic
therapy, suggesting its probable role in infl ammatory events of the intestine
Heat and water stress induce unique transcriptional signatures of heat-shock proteins and transcription factors in grapevine
Grapevine is an extremely important crop worldwide.
In southern Europe, post-flowering phases of the growth
cycle can occur under high temperatures, excessive light, and
drought conditions at soil and/or atmospheric level. In this
study, we subjected greenhouse grown grapevine, variety
Aragonez, to two individual abiotic stresses, water deficit stress
(WDS), and heat stress (HS). The adaptation of plants to stress
is a complex response triggered by cascades of molecular
networks involved in stress perception, signal transduction,
and the expression of specific stress-related genes and metabolites.
Approaches such as array-based transcript profiling allow
assessing the expression of thousands of genes in control
and stress tissues. Using microarrays, we analyzed the leaf
transcriptomic profile of the grapevine plants. Photosynthesis
measurements verified that the plants were significantly affected
by the stresses applied. Leaf gene expression was obtained
using a high-throughput transcriptomic grapevine array, the
23K custom-made Affymetrix Vitis GeneChip. We identified
1,594 genes as differentially expressed between control and
treatments and grouped them into ten major functional categories
using MapMan software. The transcriptome of Aragonez
was more significantly affected by HS when compared with
WDS. The number of genes coding for heat-shock proteins and
transcription factors expressed solely in response to HS suggesting
their expression as unique signatures of HS. However, a cross-talk between the response pathways to both stresses was
observed at the level of AP2/ERF transcription factors
Estrogen Promotes Mandibular Condylar Fibrocartilage Chondrogenesis and Inhibits Degeneration via Estrogen Receptor Alpha in Female Mice
Temporomandibular joint degenerative disease (TMJ-DD) is a chronic form of TMJ disorder that
specifically afflicts people over the age of 40 and targets women at a higher rate than men. Prevalence
of TMJ-DD in this population suggests that estrogen loss plays a role in the disease pathogenesis.
Thus, the goal of the present study was to determine the role of estrogen on chondrogenesis and
homeostasis via estrogen receptor alpha (ERα) during growth and maturity of the joint. Young and
mature WT and ERαKO female mice were subjected to ovariectomy procedures and then given placebo
or estradiol treatment. The effect of estrogen via ERα on fibrocartilage morphology, matrix production,
and protease activity was assessed. In the young mice, estrogen via ERα promoted mandibular
condylar fibrocartilage chondrogenesis partly by inhibiting the canonical Wnt signaling pathway
through upregulation of sclerostin (Sost). In the mature mice, protease activity was partly inhibited
with estrogen treatment via the upregulation and activity of protease inhibitor 15 (Pi15) and alpha-2-
macroglobulin (A2m). The results from this work provide a mechanistic understanding of estradiol on
TMJ growth and homeostasis and can be utilized for development of therapeutic targets to promote
regeneration and inhibit degeneration of the mandibular condylar fibrocartilage.National Institute of Dental & Craniofacial Research of the National Institutes of Health under Award Numbers R56DE020097 (SW) and F32DE026366 (JR
- …