848 research outputs found
Maintained partial protection against Streptococcus pneumoniae despite Bâcell depletion in mice vaccinated with a pneumococcal glycoconjugate vaccine
Objectives: Anti-CD20 monoclonal antibody therapy rapidly depletes >â95% of CD20+ B cells from the circulation. B-cell depletion is an effective treatment for autoimmune disease and B-cell malignancies but also increases the risk of respiratory tract infections. This effect on adaptive immunity could be countered by vaccination. We have used mouse models to investigate the effects of B-cell depletion on pneumococcal vaccination, including protection against infection and timing of vaccination in relation to B-cell depletion. // Methods: C57BL/6 female mice were B-cell depleted using anti-CD20 antibody and immunized with two doses of Prevnar-13 vaccine either before or after anti-CD20 treatment. B-cell repertoire and Streptococcus pneumoniaeâspecific IgG levels were measured using whole-cell ELISA and flow cytometry antibody-binding assay. Protection induced by vaccination was assessed by challenging the mice using a S.âpneumoniae pneumonia model. // Results: Antibody responses to S.âpneumoniae were largely preserved in mice B-cell depleted after vaccination resulting in full protection against pneumococcal infections. In contrast, mice vaccinated with Prevnar-13 while B cells were depleted (with >â90% reduction in B-cell numbers) had decreased circulating antiâS.âpneumoniae IgG and IgM levels (measured using ELISA and flow cytometry antibody binding assays). However, some antibody responses were maintained, and, although vaccine-induced protection against S.âpneumoniae infection was impaired, septicaemia was still prevented in 50% of challenged mice. // Conclusions: This study showed that although vaccine efficacy during periods of profound B-cell depletion was impaired some protective efficacy was preserved, suggesting that vaccination remains beneficial
The Influence of B Cell Depletion Therapy on Naturally Acquired Immunity to Streptococcus pneumoniae
The anti-CD20 antibody Rituximab to deplete CD20+ B cells is an effective treatment for rheumatoid arthritis and B cell malignancies, but is associated with an increased incidence of respiratory infections. Using mouse models we have investigated the consequences of B cell depletion on natural and acquired humoral immunity to Streptococcus pneumoniae. B cell depletion of naĂŻve C57Bl/6 mice reduced natural IgM recognition of S. pneumoniae, but did not increase susceptibility to S. pneumoniae pneumonia. ELISA and flow cytometry assays demonstrated significantly reduced IgG and IgM recognition of S. pneumoniae in sera from mice treated with B cell depletion prior to S. pneumoniae nasopharyngeal colonization compared to untreated mice. Colonization induced antibody responses to protein rather than capsular antigen, and when measured using a protein array B cell depletion prior to colonization reduced serum levels of IgG to several protein antigens. However, B cell depleted S. pneumoniae colonized mice were still partially protected against both lung infection and septicemia when challenged with S. pneumoniae after reconstitution of their B cells. These data indicate that although B cell depletion markedly impairs antibody recognition of S. pneumoniae in colonized mice, some protective immunity is maintained, perhaps mediated by cellular immunity
Partner symmetries of the complex Monge-Ampere equation yield hyper-Kahler metrics without continuous symmetries
We extend the Mason-Newman Lax pair for the elliptic complex Monge-Amp\`ere
equation so that this equation itself emerges as an algebraic consequence. We
regard the function in the extended Lax equations as a complex potential. We
identify the real and imaginary parts of the potential, which we call partner
symmetries, with the translational and dilatational symmetry characteristics
respectively. Then we choose the dilatational symmetry characteristic as the
new unknown replacing the K\"ahler potential which directly leads to a Legendre
transformation and to a set of linear equations satisfied by a single real
potential. This enables us to construct non-invariant solutions of the Legendre
transform of the complex Monge-Amp\`ere equation and obtain hyper-K\"ahler
metrics with anti-self-dual Riemann curvature 2-form that admit no Killing
vectors.Comment: submitted to J. Phys.
Population immunity to pneumococcal serotypes in Kilifi, Kenya, before and 6 years after the introduction of PCV10 with a catch-up campaign: an observational study of cross-sectional serosurveys
Background
In Kilifi (Kenya), a pneumococcal conjugate vaccine (PCV10) was introduced in 2011 in infants (aged <1 year, 3â+â0 schedule) with a catch-up campaign in children aged 1â4 years. We aimed to measure the effect of PCV10 on population immunity.
Methods
In this observational study, repeated cross-sectional serosurveys were conducted in independent random samples of 500 children younger than 15 years every 2 years between 2009 and 2017. During these surveys, blood samples were collected by venesection. Concentrations of anti-capsular IgGs against vaccine serotypes (VTs) 1, 4, 5, 6B, 7F, 9V, 14, 18C, 19F, and 23F, and against serotypes 6A and 19A, were assayed by ELISA. We plotted the geometric mean concentrations (GMCs) by birth year to visualise age-specific antibody profiles. In infants, IgG concentrations of 0·35 Όg/mL or higher were considered protective.
Findings
Of 3673 volunteers approached, 2152 submitted samples for analysis across the five surveys. Vaccine introduction resulted in an increase in the proportion of young children with protective IgG concentrations, compared with before vaccine introduction (from 0â33% of infants with VT-specific levels over the correlate of protection in 2009, to 60â94% of infants in 2011). However, among those vaccinated in infancy, GMCs of all ten VTs had waned rapidly by the age of 1, but rose again later in childhood. GMCs among children aged 10â14 years were consistently high over time (eg, the range of GMCs across survey rounds were between 0·45 ÎŒg/mL and 1·00 ÎŒg/mL for VT 23F and between 2·00 ÎŒg/mL and 3·11 ÎŒg/mL for VT 19F).
Interpretation
PCV10 in a 3â+â0 schedule elicited protective IgG levels during infancy, when disease risk is high. The high antibody levels in children aged 10â14 years might indicate continued exposure to vaccine serotypes due to residual carriage or to memory responses to cross-reactive antigens. Despite rapid waning of IgG after vaccination, disease incidence among young children in this setting remains low, suggesting that lower thresholds of antibody, or other markers of immunity (eg, memory B cells), may be needed to assess population protection among children who have aged past infancy.
Funding
Gavi, the Vaccine Alliance; Wellcome Trust
Population immunity to pneumococcal serotypes in Kilifi, Kenya, before and 6 years after the introduction of PCV10 with a catch-up campaign: an observational study of cross-sectional serosurveys
BACKGROUND: In Kilifi (Kenya), a pneumococcal conjugate vaccine (PCV10) was introduced in 2011 in infants (aged <1 year, 3â+â0 schedule) with a catch-up campaign in children aged 1-4 years. We aimed to measure the effect of PCV10 on population immunity. METHODS: In this observational study, repeated cross-sectional serosurveys were conducted in independent random samples of 500 children younger than 15 years every 2 years between 2009 and 2017. During these surveys, blood samples were collected by venesection. Concentrations of anti-capsular IgGs against vaccine serotypes (VTs) 1, 4, 5, 6B, 7F, 9V, 14, 18C, 19F, and 23F, and against serotypes 6A and 19A, were assayed by ELISA. We plotted the geometric mean concentrations (GMCs) by birth year to visualise age-specific antibody profiles. In infants, IgG concentrations of 0·35 ÎŒg/mL or higher were considered protective. FINDINGS: Of 3673 volunteers approached, 2152 submitted samples for analysis across the five surveys. Vaccine introduction resulted in an increase in the proportion of young children with protective IgG concentrations, compared with before vaccine introduction (from 0-33% of infants with VT-specific levels over the correlate of protection in 2009, to 60-94% of infants in 2011). However, among those vaccinated in infancy, GMCs of all ten VTs had waned rapidly by the age of 1, but rose again later in childhood. GMCs among children aged 10-14 years were consistently high over time (eg, the range of GMCs across survey rounds were between 0·45 ÎŒg/mL and 1·00 ÎŒg/mL for VT 23F and between 2·00 ÎŒg/mL and 3·11 ÎŒg/mL for VT 19F). INTERPRETATION: PCV10 in a 3â+â0 schedule elicited protective IgG levels during infancy, when disease risk is high. The high antibody levels in children aged 10-14 years might indicate continued exposure to vaccine serotypes due to residual carriage or to memory responses to cross-reactive antigens. Despite rapid waning of IgG after vaccination, disease incidence among young children in this setting remains low, suggesting that lower thresholds of antibody, or other markers of immunity (eg, memory B cells), may be needed to assess population protection among children who have aged past infancy. FUNDING: Gavi, the Vaccine Alliance; Wellcome Trust
Increased insolation threshold for runaway greenhouse processes on Earth like planets
Because the solar luminosity increases over geological timescales, Earth
climate is expected to warm, increasing water evaporation which, in turn,
enhances the atmospheric greenhouse effect. Above a certain critical
insolation, this destabilizing greenhouse feedback can "runaway" until all the
oceans are evaporated. Through increases in stratospheric humidity, warming may
also cause oceans to escape to space before the runaway greenhouse occurs. The
critical insolation thresholds for these processes, however, remain uncertain
because they have so far been evaluated with unidimensional models that cannot
account for the dynamical and cloud feedback effects that are key stabilizing
features of Earth's climate. Here we use a 3D global climate model to show that
the threshold for the runaway greenhouse is about 375 W/m, significantly
higher than previously thought. Our model is specifically developed to quantify
the climate response of Earth-like planets to increased insolation in hot and
extremely moist atmospheres. In contrast with previous studies, we find that
clouds have a destabilizing feedback on the long term warming. However,
subsident, unsaturated regions created by the Hadley circulation have a
stabilizing effect that is strong enough to defer the runaway greenhouse limit
to higher insolation than inferred from 1D models. Furthermore, because of
wavelength-dependent radiative effects, the stratosphere remains cold and dry
enough to hamper atmospheric water escape, even at large fluxes. This has
strong implications for Venus early water history and extends the size of the
habitable zone around other stars.Comment: Published in Nature. Online publication date: December 12, 2013.
Accepted version before journal editing and with Supplementary Informatio
Protective Effect of Nasal Colonisation with âcps/piaA and âcps/proABCStreptococcus pneumoniae Strains against Recolonisation and Invasive Infection
RATIONALE: Nasopharyngeal administration of live virulence-attenuated Streptococcus pneumoniae strains is a potential novel preventative strategy. One target for creating reduced virulence S. pneumoniae strains is the capsule, but loss of the capsule reduces the duration of S. pneumoniae colonisation in mice which could impair protective efficacy against subsequent infection. OBJECTIVES: To assess protective efficacy of nasopharyngeal administration of unencapsulated S. pneumoniae strains in murine infection models. METHODS: Strains containing cps locus deletions combined with the S. pneumoniae virulence factors psaA (reduces colonisation) or proABC (no effect on colonisation) were constructed and their virulence phenotypes and ability to prevent recolonisation or invasive infection assessed using mouse infection models. Serological responses to colonisation were compared between strains using ELISAs, immunoblots and 254 S. pneumoniae protein antigen array. Measurements and Main Results: The âcps/piaA and âcps/proABC strains were strongly attenuated in virulence in both invasive infection models and had a reduced ability to colonise the nasopharynx. ELISAs, immunoblots and protein arrays showed colonisation with either strain stimulated weaker serological responses than the wild type strain. Mice previously colonised with these strains were protected against septicaemic pneumonia but, unlike mice colonised with the wild type strain, not against S. pneumoniae recolonisation. CONCLUSIONS: Colonisation with the âcps/piaA and âcps/proABC strains prevented subsequent septicaemia, but in contrast, to published data for encapsulated double mutant strains they did not prevent recolonisation with S. pneumoniae. These data suggest targeting the cps locus is a less effective option for creating live attenuated strains that prevent S. pneumoniae infections
Divergent mathematical treatments in utility theory
In this paper I study how divergent mathematical treatments affect mathematical modelling, with a special focus on utility theory. In particular I examine recent work on the ranking of information states and the discounting of future utilities, in order to show how, by replacing the standard analytical treatment of the models involved with one based on the framework of Nonstandard Analysis, diametrically opposite results are obtained. In both cases, the choice between the standard and nonstandard treatment amounts to a selection of set-theoretical parameters that cannot be made on purely empirical grounds. The analysis of this phenomenon gives rise to a simple logical account of the relativity of impossibility theorems in economic theory, which concludes the paper
Bohrification of operator algebras and quantum logic
Following Birkhoff and von Neumann, quantum logic has traditionally been
based on the lattice of closed linear subspaces of some Hilbert space, or, more
generally, on the lattice of projections in a von Neumann algebra A.
Unfortunately, the logical interpretation of these lattices is impaired by
their nondistributivity and by various other problems. We show that a possible
resolution of these difficulties, suggested by the ideas of Bohr, emerges if
instead of single projections one considers elementary propositions to be
families of projections indexed by a partially ordered set C(A) of appropriate
commutative subalgebras of A. In fact, to achieve both maximal generality and
ease of use within topos theory, we assume that A is a so-called Rickart
C*-algebra and that C(A) consists of all unital commutative Rickart
C*-subalgebras of A. Such families of projections form a Heyting algebra in a
natural way, so that the associated propositional logic is intuitionistic:
distributivity is recovered at the expense of the law of the excluded middle.
Subsequently, generalizing an earlier computation for n-by-n matrices, we
prove that the Heyting algebra thus associated to A arises as a basis for the
internal Gelfand spectrum (in the sense of Banaschewski-Mulvey) of the
"Bohrification" of A, which is a commutative Rickart C*-algebra in the topos of
functors from C(A) to the category of sets. We explain the relationship of this
construction to partial Boolean algebras and Bruns-Lakser completions. Finally,
we establish a connection between probability measure on the lattice of
projections on a Hilbert space H and probability valuations on the internal
Gelfand spectrum of A for A = B(H).Comment: 31 page
Stevin numbers and reality
We explore the potential of Simon Stevin's numbers, obscured by shifting
foundational biases and by 19th century developments in the arithmetisation of
analysis.Comment: 22 pages, 4 figures. arXiv admin note: text overlap with
arXiv:1104.0375, arXiv:1108.2885, arXiv:1108.420
- âŠ