13,915 research outputs found

    Resistance Stability of the Secondary Tiller of \u27Caldwell\u27 Wheat After the Primary Culm Was Infested With Virulent Hessian Fly (Diptera: Cecidomyiidae) Larvae

    Get PDF
    Secondary tiller resistance of \u27Caldwell\u27 wheat, Triticum aestivum, with the H6 gene for larval resistance to Hessian fly, Mayetiola destructor, was maintained, after the primary culm had been previously infested with virulent larvae. Earlier studies showed that a primary culm infested initially with a virulent larva allowed subsequent normally avirulent larvae to survive on that cultivar; however, in our study the resistance of secondary tillers was mainained even though the primary culm was infested earlier with virulent Hessian fly larvae. This gene stability for resistance is important for optimizing wheat yield of those cultivars that possess genes resistant to the Hessian fly that are tillering and infested with different biotypes

    Hydrogen-Bonded Liquids: Effects of Correlations of Orientational Degrees of Freedom

    Get PDF
    We improve a lattice model of water introduced by Sastry, Debenedetti, Sciortino, and Stanley to give insight on experimental thermodynamic anomalies in supercooled phase, taking into account the correlations between intra-molecular orientational degrees of freedom. The original Sastry et al. model including energetic, entropic and volumic effect of the orientation-dependent hydrogen bonds (HBs), captures qualitatively the experimental water behavior, but it ignores the geometrical correlation between HBs. Our mean-field calculation shows that adding these correlations gives a more water-like phase diagram than previously shown, with the appearance of a solid phase and first-order liquid-solid and gas-solid phase transitions. Further investigation is necessary to be able to use this model to characterize the thermodynamic properties of the supercooled region.Comment: 7 pages latex, 3 figures EP

    The Independence Axiom and Asset Returns

    Get PDF
    This paper integrates models of atemporal risk preference that relax the independence axiom into a recursive intertemporal asset-pricing framework. The resulting models are amenable to empirical analysis using market data and standard Euler equation methods. We are thereby able to provide the first non-laboratory-based evidence regarding the usefulness of several new theories of risk preference for addressing standard problems in dynamic economics. Using both stock and bond returns data, we find that a model incorporating risk preferences that exhibit firstorder risk aversion accounts for significantly more of the mean and autocorrelation properties of the data than models that exhibit only second-order risk aversion. Unlike the latter class of models which require parameter estimates that are outside of the admissible parameter space, e.g., negative rates of time preference, the model with first-order risk aversion generates point estimates that are economically meaningful. We also examine the relationship between first-order risk aversion and models that employ exogenous stochastic switching processes for consumption growth.

    Irradiate-anneal screening of total dose effects in semiconductor devices

    Get PDF
    An extensive investigation of irradiate-anneal (IRAN) screening against total dose radiation effects was carried out as part of a program to harden the Mariner Jupiter/Saturn 1977 (MJS'77) spacecraft to survive the Jupiter radiation belts. The method consists of irradiating semiconductor devices with Cobalt-60 to a suitable total dose under representative bias conditions and of separating the parts in the undesired tail of the distribution from the bulk of the parts by means of a predetermined acceptance limit. The acceptable devices are then restored close to their preirradiation condition by annealing them at an elevated temperature. IRAN was used when lot screen methods were impracticable due to lack of time, and when members of a lot showed a diversity of radiation response. The feasibility of the technique was determined by testing of a number of types of linear bipolar integrated circuits, analog switches, n-channel JFETS and bipolar transistors. Based on the results of these experiments a number of device types were selected for IRAN of flight parts in the MJS'77 spacecraft systems. The part types, screening doses, acceptance criteria, number of parts tested and rejected as well as the program steps are detailed

    Voyager electronic parts radiation program, volume 1

    Get PDF
    The Voyager spacecraft is subject to radiation from external natural space, from radioisotope thermoelectric generators and heater units, and from the internal environment where penetrating electrons generate surface ionization effects in semiconductor devices. Methods for radiation hardening and tests for radiation sensitivity are described. Results of characterization testing and sample screening of over 200 semiconductor devices in a radiation environment are summarized

    Voyager electronic parts radiation program. Volume 2: Test requirements and procedures

    Get PDF
    Documents are presented outlining the conditions and requirements of the test program. The Appendixes are as follows: appendix A -- Electron Simulation Radiation Test Specification for Voyager Electronic Parts and Devices, appendix B -- Electronic Piece-Part Testing Program for Voyager, appendix C -- Test Procedure for Radiation Screening of Voyager Piece Parts, appendix D -- Boeing In Situ Test Fixture, and appendix E -- Irradiate - Anneal (IRAN) Screening Documents

    A map on the space of rational functions

    Full text link
    We describe dynamical properties of a map F\mathfrak{F} defined on the space of rational functions. The fixed points of F\mathfrak{F} are classified and the long time behavior of a subclass is described in terms of Eulerian polynomials

    Epidemic Model with Isolation in Multilayer Networks

    Get PDF
    The Susceptible-Infected-Recovered (SIR) model has successfully mimicked the propagation of such airborne diseases as influenza A (H1N1). Although the SIR model has recently been studied in a multilayer networks configuration, in almost all the research the isolation of infected individuals is disregarded. Hence we focus our study in an epidemic model in a two-layer network, and we use an isolation parameter to measure the effect of isolating infected individuals from both layers during an isolation period. We call this process the Susceptible-Infected-Isolated-Recovered (SIIRSI_IR) model. The isolation reduces the transmission of the disease because the time in which infection can spread is reduced. In this scenario we find that the epidemic threshold increases with the isolation period and the isolation parameter. When the isolation period is maximum there is a threshold for the isolation parameter above which the disease never becomes an epidemic. We also find that epidemic models, like SIRSIR overestimate the theoretical risk of infection. Finally, our model may provide a foundation for future research to study the temporal evolution of the disease calibrating our model with real data.Comment: 18 pages, 5 figures.Accepted in Scientific Report
    • …
    corecore