1,067 research outputs found

    Effects of surface chemistry on hot corrosion life

    Get PDF
    Burner rig tests were conducted under the following conditions: 900 C, hourly thermal cycling, 0.5 ppm sodium as NaCl in the gas stream, and Mach 0.3 velocity. The alloys tested were Udimet 700 (U700) and Rene 80, uncoated and with RT21, Codep, or NiCoCrAlY coatings. The tests, up to 1000 hours, included specimens in the as-processed condition and after aging at 1100 C in oxidizing or inert environments for up to 600 hours. Coil-inductance changes were measured for periodic nondestructive inspection of speciments and found useful in the following course of corrosion. Typical sulfidation observed in all cases was similar to that observed in service-run turbine components. Aging at 1100 C caused severe decrease in the hot corrosion life of RT21 and Codep coatings and a significant but lesser decrease in the life of NiCoCrAlY coatings. The extent of these decreases was much greater for all three coatings on U700 than on Rene substrates. A coating hot corrosion life-predicitin model was proposed. The model requires time/temperature information for a turbine component at takeoff conditions as well as environmental contaminant information

    Effects of surface chemistry on hot corrosion life

    Get PDF
    Hot corrosion life prediction methodology based on a combination of laboratory test data and field service turbine components, which show evidence of hot corrosion, were examined. Components were evaluated by optical metallography, scanning electron microscopy (SEM), and electron micropulse (EMP) examination

    Effects of surface chemistry on hot corrosion life

    Get PDF
    This program has its primary objective: the development of hot corrosion life prediction methodology based on a combination of laboratory test data and evaluation of field service turbine components which show evidence of hot corrosion. The laboratory program comprises burner rig testing by TRW. A summary of results is given for two series of burner rig tests. The life prediction methodology parameters to be appraised in a final campaign of burner rig tests are outlined

    Studies on cultured Schwann cells: the induction of myelin synthesis, and the control of their proliferation by a new growth factor

    Get PDF
    We have recently described the use of immunological methods to identify and purify rat Schwann cells. In dissociated cultures of neonatal sciatic nerve, all of the cells can be identified by antigenic criteria as either Schwann cells or fibroblasts. The fibroblasts may be removed by treatment with antiserum to the Thy-1 antigen and complement. The purified Schwann cells have been used to study the regulation of the expression of myelin components, and the stimulation of Schwann cell division by a soluble growth factor. Among the components of myelin, we have concentrated on the peripheral myelin glycoprotein P_0, which constitutes 50–60% of the protein in peripheral myelin. We have studied the distribution of P_0 in vitro and in vivo by immunofluorescence, immuno-autoradiography on SDS gels, and solid-phase radioimmunoassay. Our results support the hypothesis that P_0 is induced specifically as a consequence of the interaction between the Schwann cell and the myelinated type of axon. The level of P_0 in the myelin membrane is at least 1000-fold higher than in the Schwann cell membrane. Purified Schwann cells divide very slowly in a conventional tissue culture medium. This has allowed us to purify a new growth factor from extracts of brain and pituitary, tentatively named Glial Growth Factor (GGF). The activity resides in a basic protein with a native molecular weight of 6 × 10^4 daltons and a subunit molecular weight of 3 × 10^4 daltons, which is active at levels comparable to those of epidermal growth factor. GGF is mitogenic for Schwann cells, astrocytes and muscle fibroblasts

    Effects of surface chemistry on hot corrosion life

    Get PDF
    Baseline burner rig hot corrosion with Udimet 700, Rene' 80; uncoated and with RT21, Codep, or NiCoCrAlY coatings were tested. Test conditions are: 900C, hourly thermal cycling, 0.5 ppm sodium as NaCl in the gas stream, velocity 0.3 Mach. The uncoated alloys exhibited substantial typical sulfidation in the range of 140 to 170 hours. The aluminide coatings show initial visual evidence of hot corrosion at about 400 hours, however, there is no such visual evidence for the NiCoCrAlY coatings. The turbine components show sulfidation. The extent of this distress appeared to be inversely related to the average length of mission which may, reflect greater percentage of operating time near ground level or greater percentage of operation time at takeoff conditions (higher temperatures). In some cases, however, the location of maximum distress did not exhibit the structural features of hot corrosion

    Effects of surface chemistry on hot corrosion life

    Get PDF
    Burner rig tests were conducted under the following conditions: 900 C, hourly thermal cycling, 0.5 ppm sodium as MaCl in the gas stream, velocity 0.3 Mach. The alloys are Udiment 700, Rene 80, uncoated and with RT21, Codep, or NiCoCrAlY coatings. These tests were completed for specimens in the as-processed condition and after aging at 1100 C in oxidizing or inert evnivronments for time up to 600 hours. Coil inductance changes used for periodic nondestructive inspection of specimens were useful in following the course of corrosion. Typical sulfidation was observed in all cases, structurally similar to that observed for service-run turbine components. Aging at cuased a severe decrease in hot corrosion life of RT21 and Codep coatings and a significant but less decrease in the life of the NiCoCrAlY coating. The extent of these decreases was much greater for all three coatings on U700 substrates than on Rene 80 substrates. Coating/substrate interdiffusion rather than by surface oxidation

    Surface detonation in type Ia supernova explosions?

    Get PDF
    We explore the evolution of thermonuclear supernova explosions when the progenitor white dwarf star ignites asymmetrically off-center. Several numerical simulations are carried out in two and three dimensions to test the consequences of different initial flame configurations such as spherical bubbles displaced from the center, more complex deformed configurations, and teardrop-shaped ignitions. The burning bubbles float towards the surface while releasing energy due to the nuclear reactions. If the energy release is too small to gravitationally unbind the star, the ash sweeps around it, once the burning bubble approaches the surface. Collisions in the fuel on the opposite side increase its temperature and density and may -- in some cases -- initiate a detonation wave which will then propagate inward burning the core of the star and leading to a strong explosion. However, for initial setups in two dimensions that seem realistic from pre-ignition evolution, as well as for all three-dimensional simulations the collimation of the surface material is found to be too weak to trigger a detonation.Comment: 5 pages, 3 figures, in: Proceedings of the SciDAC 2006 Meeting, Denver June 25-26 2006, also available at http://herald.iop.org/jpcs46/m51/gbr//link/40

    Value Similarity about Human Resources, Competitiveness and Social Responsibility: A Study of Organizational and Suborganizational Differences

    Get PDF
    This study explored the perception of value similarity between employees and top management. Three types of organizational values were identified including values concerning the use of human resources, the competitiveness of the firm, and the importance of social responsibility. Two organizations and two subpopulations within one organization were examined to determine if differences exist in the way different groups configure their values. The results revealed that the importance of value similarity on the use of human resources was univocal or common to both organizations and subpopulations. In contrast, similarity on competiveness values and social responsibility values were found to vary and thus operate uniquely for different organizations and subgroups. The implications of these findings for the universality versus uniqueness debate within the culture literature and the future measurement of organizational value constructs are discussed

    Enforcement Styles Among Environmental Protection Officials in China

    Full text link

    Post-flare UV light curves explained with thermal instability of loop plasma

    Get PDF
    In the present work we study the C8 flare occurred on September 26, 2000 at 19:49 UT and observed by the SOHO/SUMER spectrometer from the beginning of the impulsive phase to well beyond the disappearance in the X-rays. The emission first decayed progressively through equilibrium states until the plasma reached 2-3 MK. Then, a series of cooler lines, i.e. Ca x, Ca vii, Ne vi, O iv and Si iii (formed in the temperature range log T = 4.3 - 6.3 under equilibrium conditions), are emitted at the same time and all evolve in a similar way. Here we show that the simultaneous emission of lines with such a different formation temperature is due to thermal instability occurring in the flaring plasma as soon as it has cooled below ~ 2 MK. We can qualitatively reproduce the relative start time of the light curves of each line in the correct order with a simple (and standard) model of a single flaring loop. The agreement with the observed light curves is greatly improved, and a slower evolution of the line emission is predicted, if we assume that the model loop consists of an ensemble of subloops or strands heated at slightly different times. Our analysis can be useful for flare observations with SDO/EVE.Comment: 24 pages, 7 figures, accepted for publicatio
    • …
    corecore