8 research outputs found

    On the use of superparamagnetic hydroxyapatite nanoparticles as an agent for magnetic and nuclear in vivo imaging

    Get PDF
    The identification of alternative biocompatible magnetic NPs for advanced clinical application is becoming an important need due to raising concerns about iron accumulation in soft issues associated to the administration of superparamagnetic iron oxide nanoparticles (NPs). Here, we report on the performance of previously synthetized iron-doped hydroxyapatite (FeHA) NPs as contrast agent for magnetic resonance imaging (MRI). The MRI contrast abilities of FeHA and Endorem® (dextran coated iron oxide NPs) were assessed by 1H nuclear magnetic resonance relaxometry and their performance in healthy mice was monitored by a 7 Tesla scanner. FeHA applied a higher contrast enhancement, and had a longer endurance in the liver with respect to Endorem® at iron equality. Additionally, a proof of concept of FeHA use as scintigraphy imaging agent for positron emission tomography (PET) and single photon emission computed tomography (SPECT) was given labeling FeHA with 99mTc-MDP by a straightforward surface functionalization process. Scintigraphy/x-ray fused imaging and ex vivo studies confirmed its dominant accumulation in the liver, and secondarily in other organs of the mononuclear phagocyte system. FeHA efficiency as MRI-T2 and PET-SPECT imaging agent combined to its already reported intrinsic biocompatibility qualifies it as a promising material for innovative nanomedical applications. STATEMENT OF SIGNIFICANCE: The ability of iron-doped hydroxyapatite nanoaprticles (FeHA) to work in vivo as imaging agents for magnetic resonance (MR) and nuclear imaging is demonstrated. FeHA applied an higher MR contrast in the liver, spleen and kidneys of mice with respect to Endorem®. The successful radiolabeling of FeHA allowed for scintigraphy/X-ray and ex vivo biodistribution studies, confirming MR results and envisioning FeHA application for dual-imaging

    Retraction notice to “Folic acid mediated endocytosis enhanced by modified multi stimuli nanocontainers for cancer targeting and treatment: Synthesis, characterization, in-vitro and in-vivo evaluation of therapeutic efficacy” [J. Drug Deliv. Sci. Technol. 55 (2020) 101481] (Journal of Drug Delivery Science and Technology (2020) 55, (S1773224719310421), (10.1016/j.jddst.2019.101481))

    No full text
    This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor because the following co-authors were not aware of the submission and do not agree on its content: G. Kordas, G. Loudos and A.L Tziveleka. The following authors have not responded to any correspondence from the editor about this retraction: V. Balafas and E. Fragogeorgi. © 2020 Elsevier B.V

    Menstrual and reproductive factors in women, genetic variation in CYP17A1, and pancreatic cancer risk in the European prospective investigation into cancer and nutrition (EPIC) cohort

    No full text
    Menstrual and reproductive factors and exogenous hormone use have been investigated as pancreatic cancer risk factors in case-control and cohort studies, but results have been inconsistent. We conducted a prospective examination of menstrual and reproductive factors, exogenous hormone use and pancreatic cancer risk (based on 304 cases) in 328,610 women from the EPIC cohort. Then, in a case-control study nested within the EPIC cohort, we examined 12 single nucleotide polymorphisms (SNPs) in CYP17A1 (an essential gene in sex steroid metabolism) for association with pancreatic cancer in women and men (324 cases and 353 controls). Of all factors analyzed, only younger age at menarche (<12 vs. 13 years) was moderately associated with an increased risk of pancreatic cancer in the full cohort; however, this result was marginally significant (HR = 1.44; 95% CI = 0.992.10). CYP17A1 rs619824 was associated with HRT use (p value = 0.037) in control women; however, none of the SNPs alone, in combination, or as haplotypes were associated with pancreatic cancer risk. In conclusion, with the possible exception of an early age of menarche, none of the menstrual and reproductive factors, and none of the 12 common genetic variants we evaluated at the CYP17A1 locus makes a substantial contribution to pancreatic cancer susceptibility in the EPIC cohort
    corecore