40 research outputs found

    Large-scale, high-resolution electrophysiological imaging of field potentials in brain slices with microelectronic multielectrode arrays

    Get PDF
    Multielectrode arrays (MEAs) are extensively used for electrophysiological studies on brain slices, but the spatial resolution and field of recording of conventional arrays are limited by the low number of electrodes available. Here, we present a large-scale array recording simultaneously from 4096 electrodes used to study propagating spontaneous and evoked network activity in acute murine cortico-hippocampal brain slices at unprecedented spatial and temporal resolution. We demonstrate that multiple chemically induced epileptiform episodes in the mouse cortex and hippocampus can be classified according to their spatio-temporal dynamics. Additionally, the large-scale and high-density features of our recording system enable the topological localization and quantification of the effects of antiepileptic drugs in local neuronal microcircuits, based on the distinct field potential propagation patterns. This novel high-resolution approach paves the way to detailed electrophysiological studies in brain circuits spanning spatial scales from single neurons up to the entire slice network

    Optical Coherence Tomography in Parkinsonian Syndromes

    Get PDF
    BACKGROUND/OBJECTIVE: Parkinson's disease (PD) and the atypical parkinsonian syndromes multiple system atrophy (MSA), progressive supranuclear palsy (PSP) and corticobasal syndrome (CBS) are movement disorders associated with degeneration of the central nervous system. Degeneration of the retina has not been systematically compared in these diseases. METHODS: This cross-sectional study used spectral-domain optical coherence tomography with manual segmentation to measure the peripapillar nerve fiber layer, the macular thickness, and the thickness of all retinal layers in foveal scans of 40 patients with PD, 19 with MSA, 10 with CBS, 15 with PSP, and 35 age- and sex-matched controls. RESULTS: The mean paramacular thickness and volume were reduced in PSP while the mean RNFL did not differ significantly between groups. In PSP patients, the complex of retinal ganglion cell- and inner plexiform layer and the outer nuclear layer was reduced. In PD, the inner nuclear layer was thicker than in controls, MSA and PSP. Using the ratio between the outer nuclear layer and the outer plexiform layer with a cut-off at 3.1 and the additional constraint that the inner nuclear layer be under 46 µm, we were able to differentiate PSP from PD in our patient sample with a sensitivity of 96% and a specificity of 70%. CONCLUSION: Different parkinsonian syndromes are associated with distinct changes in retinal morphology. These findings may serve to facilitate the differential diagnosis of parkinsonian syndromes and give insight into the degenerative processes of patients with atypical parkinsonian syndromes

    ¿Psicología de la Educación o Psicología Escolar? Esa es la cuestión

    Get PDF
    Este artigo apresenta alguns dados oriundos da tese de doutorado sobre a história do campo de conhecimento e prática da Psicologia em sua relação com a Educação no Brasil. Este estudo foi conduzido baseado no fundamento epistêmico-filosófico do materialismo histórico dialético e na nova história, utilizando fontes bibliográficas históricas e cinco relatos orais de personagens da Psicologia Educacional e Escolar. Os depoimentos e o material das fontes escritas constituíram o corpus documental cuja organização seguiu a metodologia da história oral e historiografia plural. Foi realizada análise descritivo-analítica compreendida em duas etapas: a) análise documental (fontes não orais) e b) construção de indicadores e núcleos de significação dos registros orais. A partir das análises, compôs-se uma periodização da história da Psicologia Educacional e Escolar brasileira por meio de marcos históricos da área. No presente artigo destaca-se a discussão acerca da conceituação e terminologias utilizadas pela Psicologia Educacional e Escolar ao longo do tempo e de como essas mudanças nas nomenclaturas da área refletem questões epistemológicas, ideológicas e políticas

    Quantitative features of EEG and STN-LFP of Parkinson’s patients with motor symptoms

    No full text
    Parkinson's disease motor symptoms are associated with excessive beta oscillations in the subthalamic nucleus (STN). However, multi-modal signals recorded during and after implantation of deep brain stimulation (DBS) electrode can provide many other, more fine-grained features. Various studies are currently searching for the features that can be useful in providing a meaningful relationship with various Parkinson’s symptoms. Finding them will allow for more precise diagnostics and treatment. Yet, studies correlating quantitative measures based on electroencephalogram (EEG) with motor symptoms have yielded no clear relationship [3], inviting further exploration. We use a large dataset to systematically investigate relationships between quantitative EEG, local field potential (LFP) in STN, and motor symptoms. The LFP and EEG data are measured in 30s blocks during surgery for the deep brain stimulation electrode placement on different electrode depths. We analyze the scale-free behavior of the EEG and LFP signals and their potential implications for Parkinson’s disease motor symptoms. We use Detrended Fluctuation Analysis (DFA) to quantify the scaling of the signal, with the DFA exponent quantifying this scaling analogously to the Hurst exponent. In our case, we are particularly interested in the dynamics of envelope amplitude modulation of cortical EEG [see Fig. 1A-D] and how it relates to the concurrently recorded signal in STN. Previous studies have shown that cortical signals exhibit scale-free behavior in the alpha and beta bands [1]. We additionally demonstrate that the DFA exponent of the alpha band strongly correlates with the power of the alpha band [see Fig. 1E]. Furthermore, previous studies have shown a correlation between cortical long-range temporal correlations (LRTC) and imaginary coherence in STN [2]. We extend these results to the larger patients cohort and include an investigation of the relationship with symptoms. <br

    Asynchronous GABA Release Is a Key Determinant of Tonic Inhibition and Controls Neuronal Excitability: A Study in the Synapsin II-/- Mouse.

    No full text
    Idiopathic epilepsies have frequently been linked to mutations in voltage-gated channels (channelopathies); recently, mutations in several genes encoding presynaptic proteins have been shown to cause epilepsy in humans and mice, indicating that epilepsy can also be considered a synaptopathy. However, the functional mechanisms by which presynaptic dysfunctions lead to hyperexcitability and seizures are not well understood. We show that deletion of synapsin II (Syn II), a presynaptic protein contributing to epilepsy predisposition in humans, leads to a loss of tonic inhibition in mouse hippocampal slices due to a dramatic decrease in presynaptic asynchronous GABA release. We also show that the asynchronous GABA release reduces postsynaptic cell firing, and the parallel impairment of asynchronous GABA release and tonic inhibition results in an increased excitability at both single-neuron and network levels. Restoring tonic inhibition with THIP (4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol; gaboxadol), a selective agonist of \u3b4 subunit-containing GABAA receptors, fully rescues the SynII(-/-) epileptic phenotype both ex vivo and in vivo. The results demonstrate a causal relationship between the dynamics of GABA release and the generation of tonic inhibition, and identify a novel mechanism of epileptogenesis generated by dysfunctions in the dynamics of release that can be effectively targeted by novel antiepileptic strategies
    corecore