12,554 research outputs found

    Guidelines for composite materials research related to general aviation aircraft

    Get PDF
    Guidelines for research on composite materials directed toward the improvement of all aspects of their applicability for general aviation aircraft were developed from extensive studies of their performance, manufacturability, and cost effectiveness. Specific areas for research and for manufacturing development were identified and evaluated. Inputs developed from visits to manufacturers were used in part to guide these evaluations, particularly in the area of cost effectiveness. Throughout the emphasis was to direct the research toward the requirements of general aviation aircraft, for which relatively low load intensities are encountered, economy of production is a prime requirement, and yet performance still commands a premium. A number of implications regarding further directions for developments in composites to meet these requirements also emerged from the studies. Chief among these is the need for an integrated (computer program) aerodynamic/structures approach to aircraft design

    Modeling the functional genomics of autism using human neurons.

    Get PDF
    Human neural progenitors from a variety of sources present new opportunities to model aspects of human neuropsychiatric disease in vitro. Such in vitro models provide the advantages of a human genetic background combined with rapid and easy manipulation, making them highly useful adjuncts to animal models. Here, we examined whether a human neuronal culture system could be utilized to assess the transcriptional program involved in human neural differentiation and to model some of the molecular features of a neurodevelopmental disorder, such as autism. Primary normal human neuronal progenitors (NHNPs) were differentiated into a post-mitotic neuronal state through addition of specific growth factors and whole-genome gene expression was examined throughout a time course of neuronal differentiation. After 4 weeks of differentiation, a significant number of genes associated with autism spectrum disorders (ASDs) are either induced or repressed. This includes the ASD susceptibility gene neurexin 1, which showed a distinct pattern from neurexin 3 in vitro, and which we validated in vivo in fetal human brain. Using weighted gene co-expression network analysis, we visualized the network structure of transcriptional regulation, demonstrating via this unbiased analysis that a significant number of ASD candidate genes are coordinately regulated during the differentiation process. As NHNPs are genetically tractable and manipulable, they can be used to study both the effects of mutations in multiple ASD candidate genes on neuronal differentiation and gene expression in combination with the effects of potential therapeutic molecules. These data also provide a step towards better understanding of the signaling pathways disrupted in ASD

    A study of secondary injection of gases into a supersonic flow

    Get PDF
    Secondary injection of gases into supersonic flo

    Critical Behavior of Light

    Full text link
    Light is shown to exhibit critical and tricritical behavior in passive mode-locked lasers with externally injected pulses. It is a first and unique example of critical phenomena in a one-dimensional many body light-mode system. The phase diagrams consist of regimes with continuous wave, driven para-pulses, spontaneous pulses via mode condensation, and heterogeneous pulses, separated by phase transition lines which terminate with critical or tricritical points. Enhanced nongaussian fluctuations and collective dynamics are observed at the critical and tricritical points, showing a mode system analog of the critical opalescence phenomenon. The critical exponents are calculated and shown to comply with the mean field theory, which is rigorous in the light system.Comment: RevTex, 5 pages, 3 figure

    An EUV Study of the Intermediate Polar EX Hydrae

    Full text link
    On 2000 May 5, we began a large multi-wavelength campaign to study the intermediate polar, EX Hydrae. The simultaneous observations from six satellites and four telescopes were centered around a one million second observation with EUVE. Although EX Hydrae has been studied previously with EUVE, our higher signal-to-noise observations present new results and challenge the current IP models. Previously unseen dips in the light curve are reminiscent of the stream dips seen in polar light curves. Also of interest is the temporal extent of the bulge dip; approximately 0.5 in phase, implying that the bulge extends over half of the accretion disk. We propose that the magnetic field in EX Hydrae is strong enough (a few MG) to begin pulling material directly from the outer edge of the disk, thereby forming a large accretion curtain which would produce a very broad bulge dip. This would also result in magnetically controlled accretion streams originating from the outer edge of the disk. We also present a period analysis of the photometric data which shows numerous beat frequencies with strong power and also intermittent and wandering frequencies, an indication that physical conditions within EX Hya changed over the course of the observation. Iron spectral line ratios give a temperature of log T=6.5-6.9 K for all spin phases and a poorly constrained density of n_e=10^10-10^11 cm^-3 for the emitting plasma. This paper is the first in a series detailing our results from this multi-wavelength observational campaign.Comment: 27 pages, 7 figures, accepted for publication in Ap

    Bound on Lorentz- and CPT-Violating Boost Effects for the Neutron

    Get PDF
    A search for an annual variation of a daily sidereal modulation of the frequency difference between co-located 129{}^{129}Xe and 3{}^{3}He Zeeman masers sets a stringent limit on boost-dependent Lorentz and CPT violation involving the neutron, consistent with no effect at the level of 150 nHz. In the framework of the general Standard-Model Extension, the present result provides the first clean test for the fermion sector of the symmetry of spacetime under boost transformations at a level of 10−2710^{-27} GeV.Comment: 4 pages, 1 figur

    The effect of follicular fluid hormones on oocyte recovery after ovarian stimulation: FSH level predicts oocyte recovery.

    Get PDF
    BackgroundOvarian stimulation for assisted reproductive technology (ART) overcomes the physiologic process to develop a single dominant follicle. However, following stimulation, egg recovery rates are not 100%. The objective of this study is to determine if the follicular fluid hormonal environment is associated with oocyte recovery.MethodsThis is a prospective study involving patients undergoing ART by standard ovarian stimulation protocols at an urban academic medical center. A total of 143 follicular fluid aspirates were collected from 80 patients. Concentrations of FSH, hCG, estradiol, progesterone, testosterone and prolactin were determined. A multivariable regression analysis was used to investigate the relationship between the follicular fluid hormones and oocyte recovery.ResultsIntrafollicular FSH was significantly associated with oocyte recovery after adjustment for hCG (Adjusted odds ratio (AOR) = 1.21, 95%CI 1.03-1.42). The hCG concentration alone, in the range tested, did not impact the odds of oocyte recovery (AOR = 0.99, 95%CI 0.93-1.07). Estradiol was significantly associated with oocyte recovery (AOR = 0.98, 95% CI 0.96-0.99). After adjustment for progesterone, the strength of association between FSH and oocyte recovery increased (AOR = 1.84, 95%CI 1.45-2.34).ConclusionThe relationship between FSH and oocyte recovery is significant and appears to work through mechanisms independent of the sex hormones. FSH may be important for the physiologic event of separation of the cumulus-oocyte complex from the follicle wall, thereby influencing oocyte recovery. Current methods for inducing the final stages of oocyte maturation, with hCG administration alone, may not be optimal. Modifications of treatment protocols utilizing additional FSH may enhance oocyte recovery

    On a class of invariant coframe operators with application to gravity

    Get PDF
    Let a differential 4D-manifold with a smooth coframe field be given. Consider the operators on it that are linear in the second order derivatives or quadratic in the first order derivatives of the coframe, both with coefficients that depend on the coframe variables. The paper exhibits the class of operators that are invariant under a general change of coordinates, and, also, invariant under the global SO(1,3)-transformation of the coframe. A general class of field equations is constructed. We display two subclasses in it. The subclass of field equations that are derivable from action principles by free variations and the subclass of field equations for which spherical-symmetric solutions, Minkowskian at infinity exist. Then, for the spherical-symmetric solutions, the resulting metric is computed. Invoking the Geodesic Postulate, we find all the equations that are experimentally (by the 3 classical tests) indistinguishable from Einstein field equations. This family includes, of course, also Einstein equations. Moreover, it is shown, explicitly, how to exhibit it. The basic tool employed in the paper is an invariant formulation reminiscent of Cartan's structural equations. The article sheds light on the possibilities and limitations of the coframe gravity. It may also serve as a general procedure to derive covariant field equations
    • …
    corecore