2,577 research outputs found
Re-entrant ferroelectricity in liquid crystals
The ferroelectric (Sm C) -- antiferroelectric (Sm C) -- reentrant
ferroelectric (re Sm C) phase temperature sequence was observed for system
with competing synclinic - anticlinic interactions. The basic properties of
this system are as follows (1) the Sm C phase is metastable in temperature
range of the Sm C stability (2) the double inversions of the helix
handedness at Sm C -- Sm C and Sm C% -- re-Sm C phase
transitions were found (3) the threshold electric field that is necessary to
induce synclinic ordering in the Sm C phase decreases near both Sm
C -- Sm C and Sm C -- re-Sm C phase boundaries, and it has
maximum in the middle of the Sm C stability region. All these properties
are properly described by simple Landau model that accounts for nearest
neighboring layer steric interactions and quadrupolar ordering only.Comment: 10 pages, 5 figures, submitted to PR
The use of selected reaction monitoring in quantitative proteomics
Selected reaction monitoring (SRM) has a long history of use in the area of quantitative MS. In recent years, the approach has seen increased application to quantitative proteomics, facilitating multiplexed relative and absolute quantification studies in a variety of organisms. This article discusses SRM, after introducing the context of quantitative proteomics (specifically primarily absolute quantification) where it finds most application, and considers topics such as the theory and advantages of SRM, the selection of peptide surrogates for protein quantification, the design of optimal SRM co-ordinates and the handling of SRM data. A number of published studies are also discussed to demonstrate the impact that SRM has had on the field of quantitative proteomics. </jats:p
The architecture of the hierarchical triple star KOI 928 from eclipse timing variations seen in Kepler photometry
We present a hierarchical triple star system (KIC 9140402) where a low mass
eclipsing binary orbits a more massive third star. The orbital period of the
binary (4.98829 Days) is determined by the eclipse times seen in photometry
from NASA's Kepler spacecraft. The periodically changing tidal field, due to
the eccentric orbit of the binary about the tertiary, causes a change in the
orbital period of the binary. The resulting eclipse timing variations provide
insight into the dynamics and architecture of this system and allow the
inference of the total mass of the binary ()
and the orbital parameters of the binary about the central star.Comment: Submitted to MNRAS Letters. Additional tables with eclipse times are
included here. The Kepler data that was used for the analysis of this system
(Q1 through Q6) will be available on MAST after June 27, 201
Is our Sun a Singleton?
Most stars are formed in a cluster or association, where the number density
of stars can be high. This means that a large fraction of initially-single
stars will undergo close encounters with other stars and/or exchange into
binaries. We describe how such close encounters and exchange encounters can
affect the properties of a planetary system around a single star. We define a
singleton as a single star which has never suffered close encounters with other
stars or spent time within a binary system. It may be that planetary systems
similar to our own solar system can only survive around singletons. Close
encounters or the presence of a stellar companion will perturb the planetary
system, often leaving planets on tighter and more eccentric orbits. Thus
planetary systems which initially resembled our own solar system may later more
closely resemble some of the observed exoplanet systems.Comment: 2 pages, 1 figure. To be published in the proceedings of IAUS246
"Dynamical Evolution of Dense Stellar Systems". Editors: E. Vesperini (Chief
Editor), M. Giersz, A. Sill
Detection of transit timing variations in excess of one hour in the Kepler multi-planet candidate system KOI 806 with the GTC
We report the detection of transit timing variations (TTVs) well in excess of
one hour in the Kepler multi-planet candidate system KOI 806. This system
exhibits transits consistent with three separate planets -- a Super-Earth, a
Jupiter, and a Saturn -- lying very nearly in a 1:2:5 resonance, respectively.
We used the Kepler public data archive and observations with the Gran
Telescopio de Canarias to compile the necessary photometry. For the largest
candidate planet (KOI 806.02) in this system, we detected a large transit
timing variation of -103.56.9 minutes against previously published
ephemeris. We did not obtain a strong detection of a transit color signature
consistent with a planet-sized object; however, we did not detect a color
difference in transit depth, either. The large TTV is consistent with
theoretical predictions that exoplanets in resonance can produce large transit
timing variations, particularly if the orbits are eccentric. The presence of
large TTVs among the bodies in this systems indicates that KOI806 is very
likely to be a planetary system. This is supported by the lack of a strong
color dependence in the transit depth, which would suggest a blended eclipsing
binary.Comment: 9 pages, 4 figures, accepted into A&A Letter
A High Power Hydrogen Target for Parity Violation Experiments
Parity-violating electron scattering measurements on hydrogen and deuterium,
such as those underway at the Bates and CEBAF laboratories, require
luminosities exceeding cms, resulting in large beam
power deposition into cryogenic liquid. Such targets must be able to absorb 500
watts or more with minimal change in target density. A 40~cm long liquid
hydrogen target, designed to absorb 500~watts of beam power without boiling,
has been developed for the SAMPLE experiment at Bates. In recent tests with
40~A of incident beam, no evidence was seen for density fluctuations in
the target, at a sensitivity level of better than 1\%. A summary of the target
design and operational experience will be presented.Comment: 13 pages, 9 postscript figure
Extended Inflation with a Curvature-Coupled Inflaton
We examine extended inflation models enhanced by the addition of a coupling
between the inflaton field and the space-time curvature. We examine two types
of model, where the underlying inflaton potential takes on second-order and
first-order form respectively. One aim is to provide models which satisfy the
solar system constraints on the Brans--Dicke parameter . This
constraint has proven very problematic in previous extended inflation models,
and we find circumstances where it can be successfully evaded, though the
constraint must be carefully assessed in our model and can be much stronger
than the usual . In the simplest versions of the model, one may
avoid the need to introduce a mass for the Brans--Dicke field in order to
ensure that it takes on the correct value at the present epoch, as seems to be
required in hyperextended inflation. We also briefly discuss aspects of the
formation of topological defects in the inflaton field itself.Comment: 24 pages, LaTeX (no figures), to appear, Physical Review D,
mishandling of the solar system constraint on extended gravity theories
corrected, SUSSEX-AST 93/6-
Constraints in the Context of Induced-gravity Inflation
Constraints on the required flatness of the scalar potential for a
cousin-model to extended inflation are studied. It is shown that, unlike
earlier results, Induced-gravity Inflation can lead to successful inflation
with a very simple lagrangian and , rather than
as previously reported. A second order phase transition further
enables this model to escape the \lq big bubble' problem of extended inflation,
while retaining the latter's motivations based on the low-energy effective
lagrangians of supergravity, superstring, and Kaluza-Klein theories.Comment: 19 pp; 3 figures (not included -- available from author). Plain
LaTeX. In press in Physical Review
- …