770 research outputs found

    Seed perturbations for primordial magnetic fields from MSSM flat directions

    Full text link
    We demonstrate that the MSSM flat directions can naturally account for the seed magnetic fields in the early Universe. The non-zero vacuum expectation value of an MSSM flat direction condensate provides masses to the gauge fields and thereby breaks conformal invariance. During inflation the condensate receives spatial perturbations and SU(2)xU(1)YSU(2) x U(1)_Y gauge currents are generated together with (hyper)magnetic fields. When these long wavelength vector perturbations reenter our horizon they give rise to U(1)emU(1)_{em} magnetic fields with an amplitude of 103010^{-30} Gauss, as required by the dynamo mechanism.Comment: 4 pages, RevTeX

    Scale-dependence of Non-Gaussianity in the Curvaton Model

    Full text link
    We investigate the scale-dependence of f_NL in the self-interacting curvaton model. We show that the scale-dependence, encoded in the spectral index n_{f_NL}, can be observable by future cosmic microwave background observations, such as CMBpol, in a significant part of the parameter space of the model. We point out that together with information about the trispectrum g_NL, the self-interacting curvaton model parameters could be completely fixed by observations. We also discuss the scale-dependence of g_NL and its implications for the curvaton model, arguing that it could provide a complementary probe in cases where the theoretical value of n_{f_NL} is below observational sensitivity.Comment: 14 pages, 5 figures, Eq.(10) correcte

    Inflection point inflation within supersymmetry

    Full text link
    We propose to address the fine tuning problem of inflection point inflation by the addition of extra vacuum energy that is present during inflation but disappears afterwards. We show that in such a case, the required amount of fine tuning is greatly reduced. We suggest that the extra vacuum energy can be associated with an earlier phase transition and provide a simple model, based on extending the SM gauge group to SU(3)_C \times SU(2)_L\times U(1)_Y\times U(1)_{B-L}, where the Higgs field of U(1)_{B-L} is in a false vacuum during inflation. In this case, there is virtually no fine tuning of the soft SUSY breaking parameters of the flat direction which serves as the inflaton. However, the absence of radiative corrections which would spoil the flatness of the inflaton potential requires that the U(1)_{B-L} gauge coupling should be small with g_{B-L}\leq 10^{-4}.Comment: 6 pages, 1 figur

    Growth of Inflaton Perturbations and the Post-Inflation Era in Supersymmetric Hybrid Inflation Models

    Full text link
    It has been shown that hybrid inflation may end with the formation of non-topological solitons of inflaton field. As a first step towards a fully realistic picture of the post-inflation era and reheating in supersymmetric hybrid inflation models, we study the classical scalar field equations of a supersymmetric hybrid inflation model using a semi-analytical ansatz for the spatial dependence of the fields. Using the minimal D-term inflation model as an example, the inflaton field is evolved using the full 1-loop effective potential from the slow-rolling era to the U(1)_{FI} symmetry-breaking phase transition. Spatial perturbations of the inflaton corresponding to quantum fluctuations are introduced for the case where there is spatially coherent U(1)_{FI} symmetry breaking. The maximal growth of the dominant perturbation is found to depend only on the ratio of superpotential coupling \lambda to the gauge coupling g. The inflaton condensate fragments to non-topological solitons for \lambda/g > 0.09. Possible consequences of non-topological soliton formation in fully realistic SUSY hybrid inflation models are discussed.Comment: 27 pages LaTeX, 8 figures. Additional references and discussio

    Identifying the curvaton within MSSM

    Full text link
    We consider inflaton couplings to MSSM flat directions and the thermalization of the inflaton decay products, taking into account gauge symmetry breaking due to flat direction condensates. We then search for a suitable curvaton candidate among the flat directions, requiring an early thermally induced start for the flat direction oscillations to facilitate the necessary curvaton energy density dominance. We demonstrate that the supersymmetry breaking AA-term is crucial for achieving a successful curvaton scenario. Among the many possible candidates, we identify the u1dd{\bf u_1dd} flat direction as a viable MSSM curvaton.Comment: 9 pages. Discussion on the evaporation of condensate added, final version published in JCA

    Observable Isocurvature Fluctuations from the Affleck-Dine Condensate

    Get PDF
    In D-term inflation models, Affleck-Dine baryogenesis produces isocurvature density fluctuations. These can be perturbations in the baryon number, or, in the case where the present neutralino density comes directly from B-ball decay, perturbations in the number of dark matter neutralinos. The latter case results in a large enhancement of the isocurvature perturbation. The requirement that the deviation of the adiabatic perturbations from scale invariance due to the Affleck-Dine field is not too large then imposes a lower bound on the magnitude of the isocurvature fluctuation of about 10210^{-2} times the adiabatic perturbation. This should be observable by MAP and PLANCK.Comment: LaTex 9 pages, 1 Figur

    Reheating as a surface effect

    Get PDF
    We describe a new mechanism for reheating the Universe through evaporation of a surface charge of a fragmented inflaton condensate. We show that for a range of Yukawa coupling of the inflaton to the matter sector evaporation gives rise to a much smaller reheat temperature compared to the standard perturbative decay. As a consequence, reheating through a surface effect could solve the gravitino and moduli over production problem in inflationary models without fine tuning the Yukawa sector.Comment: 4 page

    Affleck-Dine baryogenesis with modulated reheating

    Full text link
    Modulated reheating scenario is one of the most attractive models that predict possible detections of not only the primordial non-Gaussianity but also the tensor fluctuation through future CMB observations such as the Planck satellite, the PolarBeaR and the LiteBIRD satellite experiments. We study the baryonic-isocurvature fluctuations in the Affleck-Dine baryogenesis with the modulated reheating scenario. We show that the Affleck-Dine baryogenesis can be consistent with the modulated reheating scenario with respect to the current observational constraint on the baryonic-isocurvature fluctuations.Comment: 7 page

    A non-Gaussian landscape

    Get PDF
    Primordial perturbations with wavelengths greater than the observable universe shift the effective background fields in our observable patch from their global averages over the inflating space. This leads to a landscape picture where the properties of our observable patch depend on its location and may significantly differ from the expectation values predicted by the underlying fundamental inflationary model. We show that if multiple fields are present during inflation, this may happen even if our horizon exit would be preceded by only a few e-foldings of inflation. Non-Gaussian statistics are especially affected: for example models of local non-Gaussianity predicting |f_NL|>> 10 over the entire inflating volume can have a probability up to a few tens of percent to generate a non-detectable bispectrum in our observable patch |fNL^{obs.}|<10. In this work we establish systematic connections between the observable local properties of primordial perturbations and the global properties of the inflating space which reflect the underlying high energy physics. We study in detail the implications of both a detection and non-detection of primordial non-Gaussianity by Planck, and discover novel ways of characterising the naturalness of different observational configurations
    corecore