1,054 research outputs found

    Representation by Integrating Reproducing Kernels

    Full text link
    Based on direct integrals, a framework allowing to integrate a parametrised family of reproducing kernels with respect to some measure on the parameter space is developed. By pointwise integration, one obtains again a reproducing kernel whose corresponding Hilbert space is given as the image of the direct integral of the individual Hilbert spaces under the summation operator. This generalises the well-known results for finite sums of reproducing kernels; however, many more special cases are subsumed under this approach: so-called Mercer kernels obtained through series expansions; kernels generated by integral transforms; mixtures of positive definite functions; and in particular scale-mixtures of radial basis functions. This opens new vistas into known results, e.g. generalising the Kramer sampling theorem; it also offers interesting connections between measurements and integral transforms, e.g. allowing to apply the representer theorem in certain inverse problems, or bounding the pointwise error in the image domain when observing the pre-image under an integral transform

    Linearized dynamical model for the NASA/IEEE SCOLE configuration

    Get PDF
    The linearized equation of motion for the NASA/IEEE SCOLE configuration are developed. The derivation is based on the method of Lagrange and the equations are assembled into matrix second order form

    Burrowing apparatus

    Get PDF
    A soil burrowing mole is described in which a housing has an auger blade wound around a front portion. This portion is rotatable about a housing longitudinal axis relative to an externally finned housing rear portion upon operation of driving means to cause an advance through soil and the like. The housing carries a sensor sensitive to deviation from a predetermined path and to which is coupled means for steering the housing to maintain the path

    Soil penetrometer

    Get PDF
    An auger-type soil penetrometer for burrowing into soil formations is described. The auger, while initially moving along a predetermined path, may deviate from the path when encountering an obstruction in the soil. Alterations and modifications may be made in the structure so that it may be used for other purposes

    Research turbine for high temperature core engine application. 1: Cold-airoverall performance of solid scaled turbine

    Get PDF
    A solid, half-scale model of a 50.8-cm (20-in) research turbine designed for a high temperature core engine application was investigated over a range of speeds and pressure ratios. The results of this test are presented. The effect of rotor blade twist was also investigated. At the design equivalent speed and specific work output, the total efficiency of the turbine with untwisted rotor blades was 87.1 percent; at the same pressure ratio the efficiency of the turbine with twisted rotor blades was 88.0 percent

    Cold-air performance of a tip turbine designed to drive a lift fan

    Get PDF
    Performance was obtained over a range of speeds and pressure ratios for a 0.4 linear scale version of the LF460 lift fan turbine with the rotor radial tip clearance reduced to about 2.5 percent of the rotor blade height. These tests covered a range of speeds from 60 to 140 percent of design equivalent speed and a range of scroll inlet total to diffuser exit static pressure ratios from 2.6 to 4.2. Results are presented in terms of equivalent mass flow, equivalent torque, equivalent specific work, and efficiency

    Burst diaphragm protects vacuum vessel from internal pressure transients

    Get PDF
    Supported dual-mode burst diaphragm protects vacuum vessels from transient internal pressures. It forms the interface between the vacuum in the vessel and an external pressure

    Mean-Field Theory of Meta-Learning

    Full text link
    We discuss here the mean-field theory for a cellular automata model of meta-learning. The meta-learning is the process of combining outcomes of individual learning procedures in order to determine the final decision with higher accuracy than any single learning method. Our method is constructed from an ensemble of interacting, learning agents, that acquire and process incoming information using various types, or different versions of machine learning algorithms. The abstract learning space, where all agents are located, is constructed here using a fully connected model that couples all agents with random strength values. The cellular automata network simulates the higher level integration of information acquired from the independent learning trials. The final classification of incoming input data is therefore defined as the stationary state of the meta-learning system using simple majority rule, yet the minority clusters that share opposite classification outcome can be observed in the system. Therefore, the probability of selecting proper class for a given input data, can be estimated even without the prior knowledge of its affiliation. The fuzzy logic can be easily introduced into the system, even if learning agents are build from simple binary classification machine learning algorithms by calculating the percentage of agreeing agents.Comment: 23 page

    Cold-air performance of a tip turbine designed to drive a lift fan. 3: Effect of simulated fan leakage on turbine performance

    Get PDF
    Performance data were obtained experimentally for a 0.4 linear scale version of the LF460 lift fan turbine for a range of scroll inlet total to diffuser exit static pressure ratios at design equivalent speed with simulated fan leakage air. Tests were conducted for full and partial admission operation with three separate combinations of rotor inlet and rotor exit leakage air. Data were compared to the results obtained from previous investigations in which no leakage air was present. Results are presented in terms of mass flow, torque, and efficiency

    Cold air performance of a tip turbine designed to drive a lift fan. 2: Partial admission

    Get PDF
    Partial admission performance was obtained for a 0.4 linear scale version of the LF460 lift fan turbine over a range of speed from 40 to 140 percent of design equivalent speed and a range of scroll inlet total to diffuser exit static pressure ratio from 2.2 to 5.0. The investigation was conducted in two parts, with each part using a different side of the turbine scroll to simulate loss of a gas generator. Each side had an arc of admission of 180. Results are presented in terms of specific work, torque, mass flow, and efficiency
    corecore