1

 3.379 .052

 3.379 .052
 SOIL PENFITRONETFR
 Fiofe A. Ilowart, 4121 Brakin Drive. ia Comedz, Colif. S1e11: Grorge M. I!otz 15G4 Gasmord Intio. Alis- Ciphom Se Arlingtoa in 2:207
 Find S-x. 20. 1965. Ser. .ia 498. 38 !
 16 Clatros. (CL 73-51)

2

This invention relates to seviest for trurguing into soil formations and, coore parifulatly, to an auger-fype soil penctroancter.
Tire inverion deirriked berein was made in the pertormance of work under NASA contract and th subject to the proviunms of the Nalional Acronautict snd Space Act of 1958. Public Law 85-568 (72 Stal 426; 42 US.C. 2451). as amended.

Augerespe soil penctromsters are known. Exbting auger:-ype pencirometers have the comemn charac:crivis that the auger is coupled to the fower end of a subviantially rigid rotalable member or drive shaft. in view of the rigility of the drive shaft. the auger can be moved only abong a line corresponding to the initial direction of the shaft at the surfare of the soil. Acrnodingly, such penelrometers can be uned to obtain soil characteristic mearurements onily to the depth to which the puger can be diiven atong a subtantially straistt lize. It the al ger should encounter a buried boulder. for example. the gipidity of the drive shaft does not permit the augef to deviate from its basie prectetiormined path.

This invention provides a will penetrometer whish has the feature that the auper, while initially meving alung a predelermined path, may devizic frum such path when the auger encuunters a buried houlder or the like. Accardingiy, the depth to which this penetromeier may be used is not limited by the exittence of buricd boulders and oiher freal impediments to the movement of the auget through the soil. Moreover, the penitrometer is not restricted to deriving soil characteristic data solely from the torque sequired to drive the auger. Accordingly. increased information about the foil through which the auger moves may be obsained.

Generally speaking, this invention p:ovides apparatus for butrowing into the earit. The apparatis includes an clongate coilable torque transmitting menter and coiling means for the torque transmitting memter at one end of the member. An auger is connected to the olher end of the corque tranmmitting memter so as w be driven in responie to rotation of the torque tranmiating member: A bare is alm provided. Support means fir the coiling means are mounted to the base for retation relative to the bace. The torque transmilting merather extends from the cuilias means to the auger along the axis about which the support mesas is rotatable re!utive li. the base. The apparatus also includes drive means cou:ted is the support means operabie w rotate the sorpon means about said axis to sotate the torque transmitiais member, thereby to drive the auger.

The abuve-mentioned and other features of the present inventict ate more fully set forth in the following detailed description of the invention, atish description is -presented in conjonction with the acenampanying drawings, whercin:

FIG. 1 is a cross-sectional clevation vice of a soil c penetromiter acsording to hisis inveation;

FIG. 2 is an elevation view, with perts onitted, taken along tine 2-2 of FIG. 1:

FIG. 3 is a cross-sectional eleration virw of another soil penetrometer according to this invention:

FIG. 4 is a cross-seminna' elevation view taken along lines 4-4 of FIG. 3: ans

FIG. 5 is a crocs-cetional elevation view inted alons lines s-s of FIG. 3.

FIG. I thows a wil penetrometer it, ithe genefrometer compriving a preventy preferred embodiment of this isveation 7 be menctronneter iaclodes a base 11 haviag a torivoual portion 12 eagaged with the serfice of a soit formation 13 in which meavarements of soil charncteris. tics are to to miade. The bave member also has a vertical portion.14. The ground engaging portion of the lase memier is open at 15 to permis the passage of auger 23 into the will formation.
An ctongated. fiesible and ccitable iorque transmisuion shatt is has one of its ends consected to a rotatable drum 19. The fiexible shaft preficrably is constrocted of reveral concentric. lightly woind wire coik, ahernste coils teing wound in opponite directions as show in F1G. 5 reisive to shals 74. Such ifexible torque traasmitting shafts are known and, therefore, shaft is is not ithestrated in greater detaili. Drum 19 defines a sirgle belical s:00ve 20 around and alons its exterior surface to seceive subslantially the entire kength of the fiexible shath. The drum compriser coiling means for the fexible shaf.
The ficxitic shalt paser from drum is throush opeping 15 to the upier end of the body 22 of an auger 23 having a helieal auger blade 24 secured to and wound anuld the exierior of the ouger body. The tovier end of the auger body is pointed. The auger is construsted so that it either odvances through. or reltacts firell froin. suil with whish it is engaged, depending upoid the diree tion of rotation of fiexibie shaft 18.

Shaf: coiling and slorage drum. is is mounted on a hroriznnially disposed shatt 25 . The drum is mounted to the shaft so that the drum and shaft retate together and so that the drum may move axially along the shaft. Axiat movement of the drum olong shaft 25 is produced by the cooperation of nexitle shalt is with helizal grcoves 20 as the drum is roisied to reel in or pay out the fexible sbalt in accord with axial movement of the auger.

The drum is rolatably mounted at its opporite ends in a sugport momber 26. The support member is in turn rotatably mounted in a frame 27 which is mounted in cantitever fashion to the verical portion of base 11. The support member has upper and lower axles 28 and 29, respectively, which are rotatably moutied tu the frame. The supsort member axies are aligned elong vertical axis 30 about which the support member is rotatable telative to the base. Axie 29 is axially bored at 31 so that the nexible shaft 18 may be pasted ibrough it to the auger. A guide tube 32 for the flexible shan is mounted to the lower axle and extends from bore 38 . into subuantial tangency arith dram is to guide the texible shaft into registry with groove 20.

Frome 27 is mounted to base 11 at its upper end by a link 34 sivotally connected at its opposite ends to the frame and to the base member. respectively. The frame is mounted a: its lower end to the base by a flexure atm 35. One end of the flexure arm is pivotally connected :o the frame: the other end of the fexure arm is rigid!y 000 nected to the base. The frame thus is mounted to the hase fo: limited movement along axis 30 . The frame is furtber supported on the base by a spring 36 engaged between the frame and base-porion 12 The spring arges the frame into a selected position aiong the axis in which flexure arm 35 is relatively unstressed. The sprixg is disposed around a teiesooping post assembly 37. which prevents b:atiling of the spring-
Penetrenater it includes means for rotating the support meribcr relative to the base. A motor plate 39 is -0 rotitioily mounted is support member axie 29 above the lower extcat of the frame. An electric motor 40 is mounted to the motor plate and depends through an
opening it in the trame The motor hre an opwarity extending output stact: 42 to which a ririon pear 43 is securg for croperent with 2 sior gear if whith is secured to axte zo aluwe the metor riste. The motor piate is held saostaction stationary relative to the frame by a force gage zeembit 45. Force gape assembly 45 is similar to the pater structure shown in FIG. 4 and permits only thister rebrive movement belween the motor phete and the frame The force gate avembly, however. incloules a pair cf surizas (not showin) which urge the molor plate info a mermal or reference pexition angilarly relative to tive frame The force eage ainembly is provited to continucesly mexse the torone impatied to bexible shaft 18 to drive bee anecr in reppome to rreation of the support member. Cseracion of motor de produces rotation of suppori member 36 ahout axis 30 so that the Eexible shaft is rotated to drree the auger.

Soil renctromeser 10 alvo includer means for reeling the fiexihle shate so and from drum is and for maintainiang the fersible shaty in tension as the auger is rotaled. An clectric notor as is mounted to the drum support member below the Aram. The motor bas a rotatable output shaft (not shownit) which extends horizontally parallel to shaft 25. The mease oulput shaft comprices the input shalt of a friction-2nge adjustatik slip clutch 49 which has a rotatable. boriecratally extending output shaft 48. A pinion gear is secarred to shait ts and is engaged with a spur gear 49 sererced to drum shaft 25.

As the fiexible sturn is rotated by opsrtaion of moler so to advance the amper through soil formation 13, the Aexible thatt is urpee to unreel from drum 19 at the same rate at which the anger advances. Motor 46 is operated 10 rotate Jrum 19 in the direction of fiexible shaft payout. but at a rate which if the drum were positively linked to the motor, would drive the drum at a slower ratc. The torque imyosed upon the drum by mutor 46 via slip clutch 47. thowerer, is kess than the torque imposed upon the drum the the tension in the flexible shatt. Accordingly, the cozath slims and shaft 48 overrum the motor shifit. The stip clutch, however, imposes a drag opon the drum so tox the fexible shaft is kepe under tension as the auger is advanced. The amount of the dras. imposed upon the ctrom is determined by the adjustment of the slip clutch. te in ocsired that tension be maintained on the fiexible shan at the auger is advanced to provide a guiding dras ujon atre auger and to prevent the fexible shaft from twistiag thelf into knots as a result of the torque developed in in

Tension is ako mainained in the fiexible shaft when the flexible shaft is retated in the opposite direction to recover the auger to this sase, tension is desired to provide a guiding pran ma the auger and to prevem the shaft from twistiog inel into linots. When the auger is being rotated to cause in to back out of soil formation 13. drum drive motor ts as operated to cause the drum to reel in the fiexible sbrath Motor 46 is operated at a rate which, but for slip chrach 47, would cause the flexible shaft to be rected in an a rate greater than the rate of movement of the argm. The slippage provided thy the slip clutch, bowever, perviss the drum to reel in the flexiblc shaft at the rate at witich the auger burrows out of the soil formation. The seting of the slip clutch determines the amount of temsion imposed upon the fiexible shaft.

Penctrometer 10 is exserumerted so that measurements of the characteristes of the soil through which the anger passes may be ottricel As noted above, a force gage assembly 45 is couried so motor phete 39 for measuring the torque imparted to the auger, it will be understood, bowever, tiat the coreare delivered to the auger may be measured at the ance in desirt i. The peietrometer also indudes means for mescuning the teision in the flexible shaft. A pair of clemizal krain gages 51 are bonded to the upper and low surfaces respeatively, of fiexure nember 35. As noted aboice frame 27 has a preditermined position redatere 10 lose 11 in whith the flexure member, or at hast mex strain gages secured to the fexure
member, are unciressec. "hen the auger is engazed wilb the soil formation and tension is imparted to the fiexible sinaft. the irame is mored toward the base and the tesp ure menter is deformad. The deformaiion of the flexure member is preporion! to the tension in the fexitile shiaft The strain pares, therefore, comprise a means for measuring this tension.

The menticimeter atso inciudet means for relating the measurements of lorque delivered to the auger and of tervion in the Anexible shaft to the poxition of the anger in the soil formalion. A multi-imm ponentiomeier 54 is coupied to one end of drum shaft 25. The output of the poteniometer is direzty relates to the amount of thexithe shaft royed-out from the drum and thiss is a meacure of the position of the auger in the sol formation. Frame axic 28 carries three slip tings 5 to which are connected. respectively. the oppo:ite ends of the potentioneter wiper. The slin rings cooperate with wiper brushes which extend from a supporting housi:? 56 mounted in frame 27. Axie 28 also carrics slip rings 57 by which electrical power is supplied to noctor 46.

To asaure that auzer 23 is preperiy engaged with soll formation 13 as operation of penctrometer 10 is commenced, ar auger puick asembly 59 i: mounted to support riemixer 26. The atiger quide assembly inciades a hollow luise 60 secured to the lnwer end of support member axk 29 below frame 27. Tuhe 60 is disponed concenitic 10 axis 30 and has an omen lowet end defining an inwardly extending seripheral flange 61. A hollow tube 62 is slidsbly mounted in tube 60 for telesconing movement along axis 30 relative to lube 60 . Tube 61 has an outwardly extending circumferential Range 63 at lts upper end which is engagcable with fiange 61 to prevent disergagement of the lubes. The inner diameter of the inner lube is sired to receive the upper end of auger body 22 In the drawing the distance between frame 27 and base portion 12 has been foreshortened for purposes of compactness of illusiration: workers akilled in the ant will appreciate that the penetrometer is constructed so that the pointed lower end of the auger lies above the bottom surface of the base when the auger is fully retracted.

Another soil penetrometer 70 according to this invention is shown in F1GS. 3-5. The perctrometer includes - base 71 (similar to basc 11), a frame 72 (similar to frame 27). and a support member 73. The penetrometer also includes an clongated, flexible and coilable torque transmision shaft 74 which is like shaft 18. One end of the fiexible shaft is connected to a shaft storage and recling cage 75 and the other end of the fiexible shaft is secured to the upper end of an auger (not abown bat like auger 23).

Cage 75 is hollow and has a conical lower end 76 and a cylindrical upper end 77. Shaft 74 is connected to the cage so that as the cage is roanted about a vertical axis 72 of the penetrometer. the shaft is coinsd around the interior of the upper end of the cage. The sase is secured to support member 73 so that the cage is mounted for rotation with the supgort member relative to the base.

The support member has a downwardly extendins axially borcd axle 79 which is rotalably mounted to frame 72 concentric $t 0$ axis 78. The upper end of the cagt is rotatably mocnted to the frame along the axis by a putentiometer housing 80 secured to the upfer end of the cage and by a shaft 81 engaged between the frame and the housing. The frame, in turn, is mounted, to the base for limited axial movenent along axis 78 by a link 34, a fiexure memoer 35 and a spring 36. The base defines an opscing 15 through it clong axis 78 so that the auger may be engaged with soil formation 13 on which the base is supported

Adjacent the lower end of cage 75, the support member carries e spar gear 83 concentric 20. axis 78. The spiur gear is engaged with a worm gear 84 (see FIG. 4) which is mounted to the outpur shaft 85 of an electric mitur 86. Motor 86 is mounted to a motor plate 92. Shaft 85 at opposite ends of the worm gear is mounted
in bearings 87 which are carried ty the motor riste. Operation of the rootor rotales the sopport mentber and the cage about $2 x i s 78$ so that the flexible shaft is rotated to drive the auger.

Penctrometer 79. like penctroncter 10, inciudes a force paze arembiy 90 for measuring the torque imported to fictitte shaft is to drive the auger. The bearing which journals the end of shaft 85 cpprsite from motor 86 is mmurted by a pedestai 91 to motor plate 92 whith is slidahly mounted to the frame, as by a dovetai. connection, for example, for linear movement relative to the frams in the plane of spur gear 83. Motor 86 is also mounted to the motor plate. Intermediate the bearing and the mosor plate, pedestal 91 defines a bole 93 through it parallel to the line of movement of the motor plate reistive to the frame. A guide pia 91 is passed through bole 93 and is mounted at its opposite ends to respective ones of a poir of brackets 95 which are fixed to frame 72 . A compression spring 96 is disposed around pin 94 beimeen the pedestal and each brackel. The springs urge the motor plate into a sclected position relative to the frame. The nutor plate carries the armsture 97 of a differential transformer 98 which bas its primary winding 99 and its secondary windings 100 fixed relative to the frame. Depending upon the amount and direction of the torque imparted to the fiexible shaft by operation of motor 86. the motor plate moves in one direction or the ouber relative to the franic from the normal position of the motor plate. This movement is proportional to the torque which is delivered to the auger. The output of the differential transformer, therefore, is a measure of this torque.
Workers skilled in the art to which this Invention relates will appreciate that some mechanism other than a difterential :ransformer may be used to measure the torque delivered to the auger, If desired. For example, atrain gages may be used in conjunction with a streio member coupled between the motor plate and the frame. Alternatively, motor 86 may be fixed directly to the frame and the power required to operate the motor at a given speed may be used as a messure of the torque delivered to the auger. The use of a differential transformer has been described and shown merely for the purposes of illustration and example.

Penetrometer 70 also includes means for reeling the ficxible shaft to and from cage 75 and for maintaining the fiexible shaft in tension as the auger is rotated so that the maximum torque transmitting capacity of the ficxible shaft is utilized. A drive pulley 104 for the fexible shaft is disposed in a chamber 105 in support member 73 so that the drive pulley is oriented in a plane parallel to axis 78 and is engaged with the dexible shaft along the kength thereot which passes through an axial bore 106 through the support member. The pulley $\infty 0$ operales with an idler wheel 107 which is rotatably mounted in chamber 105 for engagement with the side of the lexibie shalt oprosite from the drive pulley. The drive pulley is secured to a shat: 108 which is the output shaft of a friction-lype slip ciutch device 109. The slip clutch has as its input the sotatable output shaft (not shown) of an electric moto- 110 (see FIG. S). Mfotos 110 is operated to drive puliey iv4 in the same manner that motor 46 is operated to drive drum 19 to maintain tension in flexibie shaft 74, regardless of the direction of rotation of the fexible shaft and regardless of the direction of movement of the fiexible sbaft through bore 106.
An auger receiver and guide assembiy. 59, in accord with the foregoing description, is secured to the lower end of support member 73 below frame 72 concentric to axis 78.
A strain gage 51 is bonded to each of the opper and lower surfaces of fexure member 35 for measuring the ten ion imposed upon flexible shaft 74.
The instartaneous deptb of the anger in soil formation 75 (or 169) to motor 46 (or 110) and incrensing the foivier
to the flexible shaft tensioning and reeling rnotur. The (or 169) to motor 46 (or 110) and incrensing the puivitr
to the flexible shaft tensioning and recling ruotur. The pall on the fiexible shaft is measured iny strein gases 51 as the coiling and drive assembiy Eis? es mataive to the base from which it is cantilevered. Theieafter, rotation to a rocuzable shaft 111 which exiends from the potestioncter into ibe cage along axis 78. A sexible shafi fot lower arm 112 is connected to the shaft in the cage for rotation with ite shaft. The follower arm is engafed with the fexible shaft As the pixible sbaft is reeked into or out of the cape. ar:a during rotation of the cage to rotate the Bexible shaft, the foliower arms by reason of ins engagement with the fixithe shaft, is rotated retatiate to the cage. Since the Bicxible shaft is coiked for storage within the cylindrial upper end of the cage, the riotation of shatit 111 is disectly related to the depth of the aoger in the soil formation. Trios the output of posentionecter 110 is a mesure of the depth of the auper.
Thres slip ringr 114 are mounted to the exterior of housing 80 and cooperates with a lite number of brastes 115 which calend from a brush bolder 116 mounted to the upper end of frame 72. Reapective ones of slip riass 114 are condustively connected by wircs (not showa) to the oproitic ends of the poxentiometer winding and to the potentiometer wiper. Three additional slip riags 117 are mounted to bousing 80 for esopertaion with a like number of brushes ils: there slin sings are cooductively connected to the input tetminals of motor 110
Penctromeiers 10 and 70 are operated in simitas manners to obtain data from which certain characteristics of soil formation 13 may be inferred. The fenctrometer is disposed over a desired. location of the soil formations; as noted ahove, al this time the auger is fully retraceed 30 that its lower end is above the bellom surface of pesetromeler bace 11. Motor* 40 and 46 (or motors th and 110) are operated to rolale the ficxible shaft and to pay the fexible shalt from its ce.ling means At the fectitie shaft is pajed otit. auger riceiver and guide assembly 59 guides the auger along axis 30 (or axis 78) into eagagement with the soil formation. The auser is hept in cortact with the guide assenibly tong enough to ossure thas the auger commences its movement through the soil formation along an imaginary extension of the axis of rolation of the support me:nter; thereatter the dras or teasion in the fixible shaft sences to maintain the ausar along such a path until a buried boulder of the like is encoustered by the augce. In the event the auger encountet: a boukder or oller localired impediment to his further progrexa along axis 30 or 78 , the auger may follow atong tive normally curved surface of the boulder until it has mores to the side of the boulder. The auger may then comiarse to burrow downwardly past the boulder, ehthough it giny now follow a pach which lies it an angle to its pilh before the toulder was encountered.

As described above, the penctrometer is basturourted so that measurements of the torque delivered to tise Rexibie shaft, and thas to the auger, are conatinuenty cotained. Also, measurements of the irstantaneors depthe of the auger in the soil formation are continurustr ootained vis the posentiometer coupled to the flexibte shat coiling means; thee measurements are als- useful to iodicale the rete of advence of the auger. From a knomiedese of the torque required to drive an anger of known ctaracteristics through a soil lurris?ion at a particular rate. the load bearing and dersity, 'ane.cecristios of the sni may be determined. Mor:over, the shear strength of $a^{\prime} c$ soil at any depth may be citermierd by stopping rotasi of the fexible shaft and prining upwanthon the fexitic shaft uritil the anger rooves axially in tie soil. The mors is pulled opwardly by positively lociine slip cectch 57

13 is measurad by the output of a malisurn rosentioneter 110 which is mounted within boosing 80 to the apper end of cage 75 concritric to axis 78 for rotation wich the cage. The wijer of the petentioncter is compected
of the texitk shist may te resumed to drive the anger to a decper locsion in the scell formation.

The zuger may be recovered from the soil formation merely ty revering the operation of motoss 42 and 44 Or motres 86 and 110 , as tixe case may te.

As shown in FIG. S. a dexikie shoft fatricated of several concentric spinaly mound wires (2djacent spirals heing mound in opiosite dircctions) has a bollow core rawape 120. The ficxible shaft, thercfire, may be uned as a coeduit for stectrical conductors from tixe auper to the fic:it'c shaft coilife and storage meank doce-dingly. if de-ired. the tomice ciclivered to ine auger and the fension on the bexible shaft may the meraured at the anper mercly by equipping the auger with suiatle instrument iramejncers desigted to sente sueh quaniition Sish iransducers are within the priserit state of the irsirumentation art and form no part of the preeent in:ention per se and thus such an alternative to the abovedscribed suracture is not illusiraled, although the mejns wherety such an altemalive may he accomiplished will be readily apparent to markers alilied in the art to which the presem invenlion relates. It is only necesury so provide adititional slip ring and brush combinations in the electrical connection of the coiling means suppont member to the frame so that signals from the iransducers may be obtained at the frame of the bace of the peneirometer.

Moreover. If desired. the auger may be equipped with addisional tranulucers and meavuring devices whereby ad. ditional measurements of desired characteristics of the soil formation may be obtained. For example, thermoccuples, radiation counters moisture sensor, masnetic sensors and the like may be housed in auser body 28. and the conductors by which the output signals of such devices are surplicd to the surface of the soil formation may be paesed through core passage 120 of the fiexible shaf. A penetrometer augmented with such instrunients Is useful in prospecting for mincrals or water, as well as in obtaining measurements of the structural characteristics of soil.

The instrumentation of penctrometert 10 and 70 for measurirg torque and tension in the fiexible shafts thereof may be eliminated where it is desired to rrovite apparatus for burrowing into a soil formation to provide an anchor in soils or in soils under water. In view of this utility of strusture according to this invertion, and also in view of the russed construction of such structures, it Is apparent that the invention may be uxeful in aranned and unmannal ciplorations of the moon. for example Apparatus instrumented in accord with the foreaping description may be included in a space vehicle designed for a soft (ie,, non-destructve) londing on the mcon. The tuger may be operated to cuase is to burrow into the lu lar eoil so that measuremenis of certain characteristics of the soil may be obisined. The output signals from the instruments in the apparatus can be arplicd to a teleme:ry sysem in the schicle for iransmission to earth for interpretation and analysis. After the auger has burrowed into the lunar soil, is may serve as an anchor so that the vehisle becomes a stable platform upen which or from which oftier experimems; such as seismotogical experiments may be enducted:

From the foregoing, it is apparent that this invention proniles a versatike, rugged and effective ipparatus for berrowing into a soil formation. The invention may be ued for any one if a number of purposec, denendinz upon Whether and bow it is irstrumented. The invention has been dexcribel abive in the context of a soil perietrometer, but such a jorm of the invention has been selected uicrely for the purfoses of expianation and example to ene stinled in the ari to wirich the invenion relates. Such worters will resdily appreciate the true socpe of the-invention and will understand that aherations and modifications may be made in the st-uctures above-described without departing from the true scops of the invention. Arcordingly, it is to be unle-rtood thist the invertion in-
ctodes the resombt: equinalen:s of the strectures and procectures deccited, and is so: to be resiricted to the precerty jecierted enboliments sekected for presensation hercin

Mins is chinsed is:

1. Apreratas for brtom ing inoo a solt formation comprisizs:
(a) an rfoozate coitabic torgce inammitins merriter.
(b) conine mean for ite torque tramonitting meraber at one ead of the zorque irammitting member.
 unacuriting momier to te driven in reyporas to notation of the sorqie trammilling nember.
(d) a tese adiptal to be supprited oa the surface of soa formation
(e) cupport means for the comiting meam moorted to the bant for rotation relutive to the brice.
the torque tramanaitiog member extexfing from the coiling mean to the augar aloas the axis atout which the wimport mean in rotatable relative to the tose, and
(I) drive meam coupind to the support means na cresse to furite the surport means about said axis to raxaie the infque trammilting memter thereby to drive the auser.
2. Apraratins accorting to chim I wherein the coiling means compriss a bollow conisally configured cape disponed atowe the bace and aligred with said axis. the cage hivirg its maill end disposed downwardly and ogening lorg said acis
3. Apraratiss accordins to claim 2 whercin the suphort n:cani incturta a rotatible member mointed to the bace fre reasion about gakt axis and divposed tetween the bise atd the cape, the boace end of the cape being werured to the rotalable memiler comeentric to said avis for sotation with the rocitable nember about said axhs the rotatable member defining a pasape therethroweh along said axts through which the torque transmilting member extents from the cage to the aucor.
4. Aprapatus according to claim 3 wherein the drive means comprises a pear serured to the rotatable nember concentric to said asis, a motor mountod to the hase and havirepa rotatable oulpus sh=ft. and gear means interconnested beturen the molor shist and the fear for rolating the gear and the rotataike member about said axis in reporse to operation of the netor.
5. Apperatus accordine to claim 3 Including means for recling the torque tranamitisis menber into and oup of the cage.
6. Apparatus according to claim $\mathbf{5}$ wherein the reeling means ixfludes a drive pulley rotatably anounted to the rotatsi' e meraber ant enjagrd with the torque transmittirs member along said paswge, an lifkr wheel engaged wi:' 1 the zorque trammisting arabiber pnd matatly mounsed to the rotasible memiter osposite the torque trarsmitting mernber five the drive pulicy, and a motor coustal to the drive pulley for rotaing the same.
7. Appara:1s accordiag to claim 6 irclixding a slip coupiine conenceted betarea the recling means motor ard the drive poliey pernitting relative motion tearect the pulley and the motor so that the motor may be drivin in the same firection as but slower than advasings movement of toe auger as the torque transmittirg mesiber is paytit ous frem the cese to maintain temion on the tor?is
 the notor can te driviea in the same direction but faster than retrating movecrent os the auger as the torque transmitting member is reelot isto the cage to maintain teasion on the zerque transmiting member as the auger is recoverol.
8. Apparatus according to clain 1 whercin the coiling means istides a drem mounted to the surport means for rotation ahout a secind axis normal to the axis about whith the support means is rotatable relatine to the base.
9. Apparatus accorfine 10 clisim \& -berein the drive means inctodes a gear secured to the support means corcestric to the atis of rotation of the support meam a motor mocmed to the hase and having a rexitatic ouifut shaft a pear meams interconnceted tetween ibe notior. than and the gear for rotating the gear in rasorse to operation of the motor.
10. Apparaus accordinp to claim 8 inctuding means for reefiry the torque tramnuiting memiker to and from the dram and for maintaining tenvion on the torgoe tranmisting menber curing reeling thereof to ard from ibe drum

IL. Apparatus according to claim 10 wherein the reeting and remioning means inclusks a motor mounted to the eupport means for rolation with the suprort means relative to the basc. the motor having a rotataike outint shatt and a slip coupling conrected between the motor shaft and the drom for rotating the drum in rehronct to operation of the nioter ard for allowing the irum to rctaie at a rate difierent from that correponding to the opera. tional rate of the motor in responic io tovels impusad upon the drum.
12. Apparatus according to claim 1 irslusling nesam for reeling the turque tranomilling memter in and from the cuiling means and for mains:ining the horyue trammisting member in teming during sentation of the forgue bato. miting nember.
13. Apparatus accurding to claill 1 indluding arams
for receiving and for scivime the aurer imo engagemenk wint the soif formation alome a sefocted poth.
14. Apparatis arcordine 10 claim 1 irateding means for meartiag the sorgue infpanted to the torgue trassmitine memter.
15. Arparatus according to claim 14 irctodire means for rectisg the lorque trammitting memice to and from the coiting trears and for maintaining the iorque transmittinte member in sencion during retation thercof. and meam courkd to the torque trammittins nember operatde during fotition thereof for measuring the tension thercia
16. Apparafus accordine to claim 15 utercin the torque Irammitting member camprioss a Fesible skefla and means for contimuouly measuring she amoura of fexible shaft reeled out from the coiling means.

References CHed

 UNITED STATES PATENTS| 2.930 .137 | 3/1980 | Arps .-.........-.-.-. $73-151$ |
| :---: | :---: | :---: |
| 3.092181 | 6/1263 | Alcxander-......- 73-151 |
| 3.153.339 | 101/1964 | Aleramer et al. 73-151 |
| 3.131.2+1 | 7/1967 | Nihwon ct al. 73-84 |

 JAMIS Cill I, fiaminer.

April 23, 1968
E. A. HOWARO ETAL.

3,379,052
SOIL PETETEOMETER
3 Sheets-Sheet 1
Filed Sepr. 20. 1968

April 23. 1968
$\because:=:=$ Sepr 23. 1ses
E. HOWARD ETA: SOIL PENETEOMETEP

3 Steetsisheet 2

