36 research outputs found

    Chlamydia pan-genomic analysis reveals balance between host adaptation and selective pressure to genome reduction

    Get PDF
    Background Chlamydia are ancient intracellular pathogens with reduced, though strikingly conserved genome. Despite their parasitic lifestyle and isolated intracellular environment, these bacteria managed to avoid accumulation of deleterious mutations leading to subsequent genome degradation characteristic for many parasitic bacteria. Results We report pan-genomic analysis of sixteen species from genus Chlamydia including identification and functional annotation of orthologous genes, and characterization of gene gains, losses, and rearrangements. We demonstrate the overall genome stability of these bacteria as indicated by a large fraction of common genes with conserved genomic locations. On the other hand, extreme evolvability is confined to several paralogous gene families such as polymorphic membrane proteins and phospholipase D, and likely is caused by the pressure from the host immune system. Conclusions This combination of a large, conserved core genome and a small, evolvable periphery likely reflect the balance between the selective pressure towards genome reduction and the need to adapt to escape from the host immunity

    The Biophysics of Na+,K+-ATPase in neuronal health and disease

    No full text
    Na+,K+-ATPase is one of the most important proteins in the mammalian cell. It creates sodium and potassium gradients which are fundamental for the membrane potential and sodium-dependent secondary active transport. It has a second role in the cell as a receptor that by binding chemicals from the cardiotonic steroids family, the most knowledgeable of them is ouabain, triggers various signaling pathways in the cell which regulate gene activation, proliferation, apoptosis, etc. It has been shown that several severe neurological diseases are associated with mutations in the Na+,K+-ATPase encoding genes. Although Na+,K+-ATPase was discovered already in 1957 by the Danish scientist Jens Skou, the knowledge about the function of this enzyme  is still not complete.   In the studies included in the thesis, we have learned more about the function of Na+,K+-ATPase in different aspects of health and disease. In study I we showed a mechanism of ouabain-dependent regulation of the NMDA receptor, one of the most important receptors in the nervous system, via binding with Na+,K+-ATPase. This allows us to look at the Na+,K+-ATPase as regulator via protein-protein interaction. In study II we investigated a different aspect of Na+,K+-ATPase functioning – to look at how binding of ouabain to Na+,K+-ATPase activates a number of signaling cascades by looking at the phosphoproteome status of the cells. This allows us to see the whole picture of ouabain-mediated cascades and further characterize them. In study III we focused on the role of Na+,K+-ATPase in severe epileptic encephalopathy caused by a mutation in the ATP1A1 gene. We performed a molecular and cellular study to describe how mutations affects protein structure and function and found that this mutation converts the ion pump to a nonspecific leak channel. In study IV we performed a translational study of the most common mutation for rapid-onset dystonia-parkinsonism. We studied how this mutation affects the nervous system on the protein-, cellular-, and organism level and found that the complete absence of ultraslow afterhyperpolarization (usAHP) could explain gait disturbances found in patients. In the on-going study we showed that Na+,K+-ATPase can oligomerize and that this effect is triggered by ouabain binding to the Na+,K+-ATPase. In this study, we utilized a novel fluorescence labelling approach and used biophysical techniques with single molecule sensitivity to track Na+,K+-ATPase interactions.   In summary, we applied biophysical and molecular methods to study different aspects of the function of Na+,K+-ATPase, and gained insights that could be helpful not only for answering fundamental questions about Na+,K+-ATPase but also to find a treatment for patients with diseases associated with mutations in this protein.Na+,K+-ATPas Ă€r ett av de viktigaste proteinerna i dĂ€ggdjurscellen. Det skapar natrium- och kaliumgradienter som Ă€r grundlĂ€ggande för den elektriska potentialen över cellmembranet och för natriumberoende sekundĂ€r aktiv transport. Det har dessutom en roll som receptor som genom att binda hjĂ€rtstimulerande steroider, varav den mest kĂ€nda Ă€r ouabain, startar olika signalvĂ€gar i cellen som bl.a. reglerar genaktivering, prolifiering och apoptos. Det har visats att flera allvarliga neurologiska sjukdomar Ă€r kopplade till mutationer i Na+,K+-ATPas gener. Trots att Na+,K+-ATPas upptĂ€cktes redan 1957, av Dansken Jens Skou, Ă€r vĂ„r kunskap om enzymets funktion Ă€nnu inte komplett. I studierna i denna avhandling har vi lĂ€rt oss mer om Na+,K+-ATPas funktion inom hĂ€lsa och sjukdomar. I studie I pĂ„visade vi en ouabainberoende reglering av NMDA-receptorn – en grundlĂ€ggande receptor i nervsystemet – via bindning till Na+,K+-ATPas. Detta visar att Na+,K+- ATPas fungerar som en regulator genom att direkt interagera med andra proteiner. I studie II undersökte vi en annan sida av Na+,K+-ATPas funktion – hur bindning av ouabain till Na+,K+-ATPas aktiverar flera signal-kaskader – genom att titta pĂ„ cellens fosfoproteoms-status. Vi kunde pĂ„ sĂ„ sĂ€tt fĂ„ en mer heltĂ€ckande bild av ouabain-styrda kaskader, och karakterisera dem. I studie III fokuserade vi pĂ„ Na+,K+-ATPas roll i svĂ„rartad epileptisk encefalopati orsakad av en mutation i ATP1A1-genen. Vi utförde en molekylĂ€r och cellulĂ€r studie för att beskriva hur en mutation pĂ„verkar proteinets struktur och funktion, och fann att mutationen omvandlar jonpumpen till en ospecifik lĂ€ckkanal. I studie IV genomförde vi en translationell studie för den vanligaste mutationen vid dystoni parkinsonism med snabb debut. Vi studerade hur mutationen pĂ„verkar vi nervsystemet pĂ„ protein-, cell-, och organismnivĂ„ och fann att frĂ„nvaro av ultralĂ„ngsam efterhyperpolarisering skulle kunna förklara patienters problem med gĂ„ngen. I pĂ„gĂ„ende studie visade vi att Na+,K+-ATPas kan oligomerisera och att detta startas av bindning till ouabain. I denna studie utvecklade vi en fluorescensmĂ€rkning av Na+,K+-ATPas, och oligomeriseringen studerades med fluorescenstekniker med en-molekylkĂ€nslighet. Sammanfattningsvis har vi anvĂ€nt biofysikaliska och molekylĂ€ra metoder för att studera olika aspekter av Na+,K+-ATPas funktion och nĂ„tt insikter som kan vara till hjĂ€lp, inte bara för att beskriva grundlĂ€ggande molekylĂ€ra funktioner men Ă€ven för att hitta botemedel mot sjukdommar kopplade till mutationer i Na+,K+-ATPas

    The Biophysics of Na+,K+-ATPase in neuronal health and disease

    No full text
    Na+,K+-ATPase is one of the most important proteins in the mammalian cell. It creates sodium and potassium gradients which are fundamental for the membrane potential and sodium-dependent secondary active transport. It has a second role in the cell as a receptor that by binding chemicals from the cardiotonic steroids family, the most knowledgeable of them is ouabain, triggers various signaling pathways in the cell which regulate gene activation, proliferation, apoptosis, etc. It has been shown that several severe neurological diseases are associated with mutations in the Na+,K+-ATPase encoding genes. Although Na+,K+-ATPase was discovered already in 1957 by the Danish scientist Jens Skou, the knowledge about the function of this enzyme  is still not complete.   In the studies included in the thesis, we have learned more about the function of Na+,K+-ATPase in different aspects of health and disease. In study I we showed a mechanism of ouabain-dependent regulation of the NMDA receptor, one of the most important receptors in the nervous system, via binding with Na+,K+-ATPase. This allows us to look at the Na+,K+-ATPase as regulator via protein-protein interaction. In study II we investigated a different aspect of Na+,K+-ATPase functioning – to look at how binding of ouabain to Na+,K+-ATPase activates a number of signaling cascades by looking at the phosphoproteome status of the cells. This allows us to see the whole picture of ouabain-mediated cascades and further characterize them. In study III we focused on the role of Na+,K+-ATPase in severe epileptic encephalopathy caused by a mutation in the ATP1A1 gene. We performed a molecular and cellular study to describe how mutations affects protein structure and function and found that this mutation converts the ion pump to a nonspecific leak channel. In study IV we performed a translational study of the most common mutation for rapid-onset dystonia-parkinsonism. We studied how this mutation affects the nervous system on the protein-, cellular-, and organism level and found that the complete absence of ultraslow afterhyperpolarization (usAHP) could explain gait disturbances found in patients. In the on-going study we showed that Na+,K+-ATPase can oligomerize and that this effect is triggered by ouabain binding to the Na+,K+-ATPase. In this study, we utilized a novel fluorescence labelling approach and used biophysical techniques with single molecule sensitivity to track Na+,K+-ATPase interactions.   In summary, we applied biophysical and molecular methods to study different aspects of the function of Na+,K+-ATPase, and gained insights that could be helpful not only for answering fundamental questions about Na+,K+-ATPase but also to find a treatment for patients with diseases associated with mutations in this protein.Na+,K+-ATPas Ă€r ett av de viktigaste proteinerna i dĂ€ggdjurscellen. Det skapar natrium- och kaliumgradienter som Ă€r grundlĂ€ggande för den elektriska potentialen över cellmembranet och för natriumberoende sekundĂ€r aktiv transport. Det har dessutom en roll som receptor som genom att binda hjĂ€rtstimulerande steroider, varav den mest kĂ€nda Ă€r ouabain, startar olika signalvĂ€gar i cellen som bl.a. reglerar genaktivering, prolifiering och apoptos. Det har visats att flera allvarliga neurologiska sjukdomar Ă€r kopplade till mutationer i Na+,K+-ATPas gener. Trots att Na+,K+-ATPas upptĂ€cktes redan 1957, av Dansken Jens Skou, Ă€r vĂ„r kunskap om enzymets funktion Ă€nnu inte komplett. I studierna i denna avhandling har vi lĂ€rt oss mer om Na+,K+-ATPas funktion inom hĂ€lsa och sjukdomar. I studie I pĂ„visade vi en ouabainberoende reglering av NMDA-receptorn – en grundlĂ€ggande receptor i nervsystemet – via bindning till Na+,K+-ATPas. Detta visar att Na+,K+- ATPas fungerar som en regulator genom att direkt interagera med andra proteiner. I studie II undersökte vi en annan sida av Na+,K+-ATPas funktion – hur bindning av ouabain till Na+,K+-ATPas aktiverar flera signal-kaskader – genom att titta pĂ„ cellens fosfoproteoms-status. Vi kunde pĂ„ sĂ„ sĂ€tt fĂ„ en mer heltĂ€ckande bild av ouabain-styrda kaskader, och karakterisera dem. I studie III fokuserade vi pĂ„ Na+,K+-ATPas roll i svĂ„rartad epileptisk encefalopati orsakad av en mutation i ATP1A1-genen. Vi utförde en molekylĂ€r och cellulĂ€r studie för att beskriva hur en mutation pĂ„verkar proteinets struktur och funktion, och fann att mutationen omvandlar jonpumpen till en ospecifik lĂ€ckkanal. I studie IV genomförde vi en translationell studie för den vanligaste mutationen vid dystoni parkinsonism med snabb debut. Vi studerade hur mutationen pĂ„verkar vi nervsystemet pĂ„ protein-, cell-, och organismnivĂ„ och fann att frĂ„nvaro av ultralĂ„ngsam efterhyperpolarisering skulle kunna förklara patienters problem med gĂ„ngen. I pĂ„gĂ„ende studie visade vi att Na+,K+-ATPas kan oligomerisera och att detta startas av bindning till ouabain. I denna studie utvecklade vi en fluorescensmĂ€rkning av Na+,K+-ATPas, och oligomeriseringen studerades med fluorescenstekniker med en-molekylkĂ€nslighet. Sammanfattningsvis har vi anvĂ€nt biofysikaliska och molekylĂ€ra metoder för att studera olika aspekter av Na+,K+-ATPas funktion och nĂ„tt insikter som kan vara till hjĂ€lp, inte bara för att beskriva grundlĂ€ggande molekylĂ€ra funktioner men Ă€ven för att hitta botemedel mot sjukdommar kopplade till mutationer i Na+,K+-ATPas

    The Biophysics of Na+,K+-ATPase in neuronal health and disease

    No full text
    Na+,K+-ATPase is one of the most important proteins in the mammalian cell. It creates sodium and potassium gradients which are fundamental for the membrane potential and sodium-dependent secondary active transport. It has a second role in the cell as a receptor that by binding chemicals from the cardiotonic steroids family, the most knowledgeable of them is ouabain, triggers various signaling pathways in the cell which regulate gene activation, proliferation, apoptosis, etc. It has been shown that several severe neurological diseases are associated with mutations in the Na+,K+-ATPase encoding genes. Although Na+,K+-ATPase was discovered already in 1957 by the Danish scientist Jens Skou, the knowledge about the function of this enzyme  is still not complete.   In the studies included in the thesis, we have learned more about the function of Na+,K+-ATPase in different aspects of health and disease. In study I we showed a mechanism of ouabain-dependent regulation of the NMDA receptor, one of the most important receptors in the nervous system, via binding with Na+,K+-ATPase. This allows us to look at the Na+,K+-ATPase as regulator via protein-protein interaction. In study II we investigated a different aspect of Na+,K+-ATPase functioning – to look at how binding of ouabain to Na+,K+-ATPase activates a number of signaling cascades by looking at the phosphoproteome status of the cells. This allows us to see the whole picture of ouabain-mediated cascades and further characterize them. In study III we focused on the role of Na+,K+-ATPase in severe epileptic encephalopathy caused by a mutation in the ATP1A1 gene. We performed a molecular and cellular study to describe how mutations affects protein structure and function and found that this mutation converts the ion pump to a nonspecific leak channel. In study IV we performed a translational study of the most common mutation for rapid-onset dystonia-parkinsonism. We studied how this mutation affects the nervous system on the protein-, cellular-, and organism level and found that the complete absence of ultraslow afterhyperpolarization (usAHP) could explain gait disturbances found in patients. In the on-going study we showed that Na+,K+-ATPase can oligomerize and that this effect is triggered by ouabain binding to the Na+,K+-ATPase. In this study, we utilized a novel fluorescence labelling approach and used biophysical techniques with single molecule sensitivity to track Na+,K+-ATPase interactions.   In summary, we applied biophysical and molecular methods to study different aspects of the function of Na+,K+-ATPase, and gained insights that could be helpful not only for answering fundamental questions about Na+,K+-ATPase but also to find a treatment for patients with diseases associated with mutations in this protein.Na+,K+-ATPas Ă€r ett av de viktigaste proteinerna i dĂ€ggdjurscellen. Det skapar natrium- och kaliumgradienter som Ă€r grundlĂ€ggande för den elektriska potentialen över cellmembranet och för natriumberoende sekundĂ€r aktiv transport. Det har dessutom en roll som receptor som genom att binda hjĂ€rtstimulerande steroider, varav den mest kĂ€nda Ă€r ouabain, startar olika signalvĂ€gar i cellen som bl.a. reglerar genaktivering, prolifiering och apoptos. Det har visats att flera allvarliga neurologiska sjukdomar Ă€r kopplade till mutationer i Na+,K+-ATPas gener. Trots att Na+,K+-ATPas upptĂ€cktes redan 1957, av Dansken Jens Skou, Ă€r vĂ„r kunskap om enzymets funktion Ă€nnu inte komplett. I studierna i denna avhandling har vi lĂ€rt oss mer om Na+,K+-ATPas funktion inom hĂ€lsa och sjukdomar. I studie I pĂ„visade vi en ouabainberoende reglering av NMDA-receptorn – en grundlĂ€ggande receptor i nervsystemet – via bindning till Na+,K+-ATPas. Detta visar att Na+,K+- ATPas fungerar som en regulator genom att direkt interagera med andra proteiner. I studie II undersökte vi en annan sida av Na+,K+-ATPas funktion – hur bindning av ouabain till Na+,K+-ATPas aktiverar flera signal-kaskader – genom att titta pĂ„ cellens fosfoproteoms-status. Vi kunde pĂ„ sĂ„ sĂ€tt fĂ„ en mer heltĂ€ckande bild av ouabain-styrda kaskader, och karakterisera dem. I studie III fokuserade vi pĂ„ Na+,K+-ATPas roll i svĂ„rartad epileptisk encefalopati orsakad av en mutation i ATP1A1-genen. Vi utförde en molekylĂ€r och cellulĂ€r studie för att beskriva hur en mutation pĂ„verkar proteinets struktur och funktion, och fann att mutationen omvandlar jonpumpen till en ospecifik lĂ€ckkanal. I studie IV genomförde vi en translationell studie för den vanligaste mutationen vid dystoni parkinsonism med snabb debut. Vi studerade hur mutationen pĂ„verkar vi nervsystemet pĂ„ protein-, cell-, och organismnivĂ„ och fann att frĂ„nvaro av ultralĂ„ngsam efterhyperpolarisering skulle kunna förklara patienters problem med gĂ„ngen. I pĂ„gĂ„ende studie visade vi att Na+,K+-ATPas kan oligomerisera och att detta startas av bindning till ouabain. I denna studie utvecklade vi en fluorescensmĂ€rkning av Na+,K+-ATPas, och oligomeriseringen studerades med fluorescenstekniker med en-molekylkĂ€nslighet. Sammanfattningsvis har vi anvĂ€nt biofysikaliska och molekylĂ€ra metoder för att studera olika aspekter av Na+,K+-ATPas funktion och nĂ„tt insikter som kan vara till hjĂ€lp, inte bara för att beskriva grundlĂ€ggande molekylĂ€ra funktioner men Ă€ven för att hitta botemedel mot sjukdommar kopplade till mutationer i Na+,K+-ATPas

    MindReader : Unsupervised Classification of Electroencephalographic Data

    No full text
    Electroencephalogram (EEG) interpretation plays a critical role in the clinical assessment of neurological conditions, most notably epilepsy. However, EEG recordings are typically analyzed manually by highly specialized and heavily trained personnel. Moreover, the low rate of capturing abnormal events during the procedure makes interpretation time-consuming, resource-hungry, and overall an expensive process. Automatic detection offers the potential to improve the quality of patient care by shortening the time to diagnosis, managing big data and optimizing the allocation of human resources towards precision medicine. Here, we present MindReader, a novel unsupervised machine-learning method comprised of the interplay between an autoencoder network, a hidden Markov model (HMM), and a generative component: after dividing the signal into overlapping frames and performing a fast Fourier transform, MindReader trains an autoencoder neural network for dimensionality reduction and compact representation of different frequency patterns for each frame. Next, we processed the temporal patterns using a HMM, while a third and generative component hypothesized and characterized the different phases that were then fed back to the HMM. MindReader then automatically generates labels that the physician can interpret as pathological and non-pathological phases, thus effectively reducing the search space for trained personnel. We evaluated MindReader’s predictive performance on 686 recordings, encompassing more than 980 h from the publicly available Physionet database. Compared to manual annotations, MindReader identified 197 of 198 epileptic events (99.45%), and is, as such, a highly sensitive method, which is a prerequisite for clinical use

    Additional file 21 of Chlamydia pan-genomic analysis reveals balance between host adaptation and selective pressure to genome reduction

    No full text
    All polyN tracts of length 5 or more nucleotides in sequences of genes from OG1. Sequences were extracted and scanned prior to automatic correction for frameshifts implemented in the RAST pipeline. (CSV 133 kb
    corecore