1,249 research outputs found

    GM1 OLIGOSACCHARIDE ACCOUNTS FOR GM1 ROLE IN ENHANCING NEURONAL DEVELOPMENT ACTING ON TRKA-MAPK PATHWAY

    Get PDF
    Il ganglioside GM1 \ue8 un glicosfingolipide mono-sialilato presente nello strato esterno della membrana plasmatica cellulare ed \ue8 particolarmente abbondante nei neuroni. Numerosi studi in vitro e in vivo evidenziano il ruolo del GM1 non solo come componente strutturale ma anche come regolatore di diversi processi cellulari. Infatti, l'arricchimento di GM1 nei microdomini di membrana promuove il differenziamento e la protezione neuronale. Inoltre il contenuto di GM1 \ue8 essenziale per la sopravvivenza e il mantenimento dei neuroni. Nonostante vi siano numerose evidenze sugli effetti neuronotrofici mediati dal GM1, la conoscenza del meccanismo d'azione sottostante \ue8 scarsa. Recentemente, la catena oligosaccaridica del GM1 (oligoGM1) \ue8 stata identificata come responsabile delle propriet\ue0 neuritogeniche del ganglioside GM1 nelle cellule di neuroblastoma. Gli effetti mediati dall\u2019oligoGM1 dipendono dal suo legame con il recettore specifico dell\u2019 NGF, il TrkA, determinando cos\uec l'attivazione della via TrkA-MAPK. In questo contesto, il mio lavoro di dottorato mirava a confermare il ruolo dell\u2019oligoGM1, come componente bioattiva dell\u2019intero ganglioside GM1, capace di stimolare i processi di differenziaziamento e maturazione dei neuroni granulari cerebellari di topo. Come prima cosa, abbiamo eseguito analisi morfologiche in time -course sui neuroni primari coltivati in presenza o in assenza dei gangliosidi GM1 o GD1a (il quale rappresenta il diretto precursore catabolico del GM1), somministrati esogenamente. Abbiamo osservato che entrambi i gangliosidi aumentavano l\u2019aggregazione e l'arborizzazione dei neuroni. Dopo successiva somministrazione dei rispettivi oligosaccaridi, abbiamo osservato che solo l\u2019oligoGM1 favoriva la migrazione dei neuroni, mentre l\u2019oligoGD1a non induceva nessun effetto discriminante rispetto alle cellule controllo. Questo risultato suggerisce l'importanza della specifica struttura saccaridica del GM1 nella mediazione degli effetti neuronotrofici del ganglioside. Quindi abbiamo caratterizzato biochimicamente l'effetto mediato dall\u2019oligoGM1 nei neuroni e abbiamo osservato un pi\uf9 elevato tasso di fosforilazione delle proteine FAK e Src, le quali rappresentano i regolatori intracellulari chiave della motilit\ue0 neuronale. Inoltre, in presenza dell\u2019 oligoGM1 i neuroni granulari cerebellari mostravano un aumento del livello di marcatori neuronali specifici (ad es. \u3b23-Tubulina, Tau, Neuroglicano C, Sinapsina), suggerendo uno stadio di maturazione pi\uf9 avanzato rispetto ai controlli. Inoltre, abbiamo scoperto che l'oligoGM1 accelera l'espressione del pattern di gangliosidi tipico dei neuroni maturi che \ue8 caratterizzato da alti livelli di gangliosidi complessi (cio\ue8 GM1, GD1a, GD1b e GT1b) e basso livello del ganglioside pi\uf9 semplice GM3. Per studiare il meccanismo d'azione dell'oligoGM1, abbiamo usato il suo derivato marcato con il trizio e abbiamo scoperto che l'oligoGM1 interagisce con la superficie cellulare senza entrare nelle cellule. Questa scoperta suggerisce la presenza di un bersaglio biologico sulla membrana plasmatica neuronale. \uc8 interessante notare che abbiamo riscontrato una precoce attivazione della via di segnalazione del TrkA associata alle MAP chinasi in seguito alla somministrazione dell\u2019oligoGM1 nelle culture neuronali. Questo risultato suggerisce che questo evento rappresenti un punto di partenza degli effetti dell\u2019 oligoGM1 nei neuroni. I nostri dati rivelano che gli effetti del ganglioside GM1 sul differenziamento e la maturazione neuronale sono mediati dalla sua porzione di oligosaccaride. Infatti, l\u2019oligoGM1 interagisce con la superficie cellulare, innescando cos\uec l'attivazione di processi biochimici intracellulari che sono responsabili della migrazione neuronale, dell'emissione dei dendriti e della crescita degli assoni. Nel complesso, i nostri risultati sottolineano l'importanza dell\u2019 oligoGM1 come un nuovo e promettente fattore neurotrofico.The GM1 ganglioside is a mono-sialylated glycosphingolipid present in the outer layer of the cell plasma membrane and abundant in neurons. Numerous in vitro and in vivo studies highlight the role of GM1 not only as a structural component but also as a functional regulator. Indeed, GM1 enrichment in membrane microdomains promotes neuronal differentiation and protection, and the GM1 content is essential for neuronal survival and maintenance. Despite many lines of evidence on the GM1-mediated neuronotrophic effects, our knowledge on the underlying mechanism of action is scant. Recently, the oligosaccharide chain of GM1 (oligoGM1) has been identified as responsible for the neuritogenic properties of the GM1 ganglioside in neuroblastoma cells. The oligoGM1-mediated effects depend on its binding to the NGF specific receptor TrkA, thus resulting in the TrkA-MAPK pathway activation. In this context, my PhD work aimed to confirm the role of the oligoGM1, as the bioactive portion of the entire GM1 ganglioside, capable of enhancing the differentiation and maturation processes of mouse cerebellar granule neurons. First, we performed time course morphological analyses on mouse primary neurons plated in the presence or absence of exogenously administered gangliosides GM1 or GD1a (direct GM1 catabolic precursor). We found that both gangliosides increased neuron clustering and arborization, however only oligoGM1 and not oligoGD1a induced the same effects in prompting neuron migration. This result suggests the importance of the specific GM1 saccharide structure in mediating neuronotrophic effects. Then we characterized biochemically the oligoGM1-mediated effect in mouse primary neurons, and we observed a higher phosphorylation rate of FAK and Src proteins which are the intracellular key regulators of neuronal motility. Moreover, in the presence of oligoGM1 cerebellar granule neurons showed increased level of specific neuronal markers (e.g., \u3b23-Tubulin, Tau, Neuroglycan C, Synapsin), suggesting an advanced stage of maturation compared to controls. In addition, we found that the oligoGM1 accelerates the expression of the typical ganglioside pattern of mature neurons which is characterized by high levels of complex gangliosides (i.e., GM1, GD1a, GD1b, and GT1b) and low level of the simplest one, the GM3 ganglioside. To study the mechanism of action of the oligoGM1, we used its tritium labeled derivative and we found that the oligoGM1 interacts with the cell surface without entering the cells. This finding suggests the presence of a biological target at the neuronal plasma membrane. Interestingly, we observed the TrkA-MAP kinase pathway activation as an early event underlying oligoGM1 effects in neurons. Our data reveal that the effects of GM1 ganglioside on neuronal differentiation and maturation are mediated by its oligosaccharide portion. Indeed, oligoGM1 interacts with the cell surface, thus triggering the activation of intracellular biochemical pathways that are responsible for neuronal migration, dendrites emission and axon growth. Overall, our results point out the importance of oligoGM1 as a new promising neurotrophic player

    Cerebral venous hemodynamic abnormalities in episodic and chronic migraine

    Get PDF
    Alterations of cerebral venous drainage have been demonstrated in chronic migraine (CM), suggesting that cerebral venous hemodynamic abnormalities (CVHAs) play a role in this condition. The aim of the present study was to look for a correlation between CM and CVHAs. We recruited 33 subjects suffering from CM with or without analgesic overuse, 29 episodic migraine (EM) patients with or without aura, and 21 healthy subjects as controls (HCs). CVHAs were evaluated by transcranial and extracranial echo-color Doppler evaluation of five venous hemodynamic parameters. CVHAs were significantly more frequent in the CM and EM patients than in the HCs. In the migraine patients, CVHAs were not correlated with clinical features. Cerebral venous hemodynamic abnormalities in episodic and chronic migraine The significantly greater frequency of CVHAs observed in the migraineurs may reflect a possible relationship between migraine and these abnormalities. Prospective longitudinal studies are needed to investigate whether CVHAs have a role in the processes of migraine chronification

    GM1 Ganglioside Is A Key Factor in Maintaining the Mammalian Neuronal Functions Avoiding Neurodegeneration

    Get PDF
    Many species of ganglioside GM1, differing for the sialic acid and ceramide content, have been characterized and their physico\u2010chemical properties have been studied in detail since 1963. Scientists were immediately attracted to the GM1 molecule and have carried on an ever\u2010increasing number of studies to understand its binding properties and its neurotrophic and neuroprotective role. GM1 displays a well balanced amphiphilic behavior that allows to establish strong both hydrophobic and hydrophilic interactions. The peculiar structure of GM1 reduces the fluidity of the plasma membrane which implies a retention and enrichment of the ganglioside in specific membrane domains called lipid rafts. The dynamism of the GM1 oligosaccharide head allows it to assume different conformations and, in this way, to interact through hydrogen or ionic bonds with a wide range of membrane receptors as well as with extracellular ligands. After more than 60 years of studies, it is a milestone that GM1 is one of the main actors in determining the neuronal functions that allows humans to have an intellectual life. The progressive reduction of its biosynthesis along the lifespan is being considered as one of the causes underlying neuronal loss in aged people and severe neuronal decline in neurodegenerative diseases. In this review, we report on the main knowledge on ganglioside GM1, with an emphasis on the recent discoveries about its bioactive component

    Atrial Fibrillation Ablation without Interruption of Anticoagulation

    Get PDF
    Atrial fibrillation (AF) can be cured by pulmonary vein antrum isolation (PVAI) in a substantial proportion of patients. The high efficacy of PVAI is partially undermined by a small but concrete periprocedural risk of complications, such as thromboembolic events and bleeding. A correct management of anticoagulation is essential to prevent such complications. Performing PVAI without interruption of oral anticoagulation has been demonstrated feasible by our group in previous studies. Recently, we reported that continuation of therapeutic warfarin during radiofrequency catheter ablation consistently reduces the risk of periprocedural stroke/transient ischemic attack without increasing the risk of hemorrhagic events. Of note, interrupting warfarin anticoagulation may actually increase the risk of stroke even when bridged with heparin. The latter strategy is also associated with an increased risk of minor bleeding. With regard to major bleeding, we found no significant difference between patients with a therapeutic INR and those who were bridged with heparin. Therefore, continuation of therapeutic warfarin during ablation of AF appears to be the best anticoagulation strategy. In this paper we summarize our experience with AF ablation without interruption of anticoagulation

    Characterization of the GM1 oligosaccharide transport across the blood-brain-barrier

    Get PDF
    Ganglioside GM1 has demonstrated to attenuate Parkinson Disease (PD) symptoms in clinical and preclinical trials. Nevertheless, the GM1 efficacy revealed in vitro is critically reduced in vivo, because of the amphiphilic behavior that limits the passage across the blood brain barrier (BBB). In vitro and in vivo experiments showed that GM1 exerts neurotrophic functions by interacting with plasma membrane (PM) proteins throughout its oligosaccharide portion (OligoGM1). Furthermore, OligoGM1 intravenously or subcutaneously injected into mice is absorbed and taken up by different organs and tissues, including brain. In order to take advantage of GM1 oligosaccharide properties and to overcome GM1 pharmacological limitation, this study has been aimed by the investigation of the OligoGM1 transportthrough the BBB, by using a human in vitro model for human brain-like endothelial cells (hBLEC). Ruled out the toxicity of OligoGM1 on hBLEC, the OligoGM1 transport across the hBBB has been analyzed, finding out a 20 fold higher rate than GM1 and a time and concentration dependence. In order to characterize the OligoGM1 passage, a direct evaluation of the OligoGM1 interaction with the ABC-transporters was carried on, leaving out this way for OligoGM1 transport. Moreover, inverse- and 4\ub0C-transport experiments were performed excluding the implication of the active transport for OligoGM1 passage across the hBLEC, leading to consider the passive-paracellular route. Furthermore, after the hBLEC transport, OligoGM1 maintained its stability and capacity to induce neuritogenesis in the mouse neuroblastoma cells line Neuro2a. This preliminary study has improved the knowledge about the GM1 pharmacological potential by proving that OligoGM1 can cross advantageously the BBB, offering a new promising therapeutic strategy

    Desogestrel down-regulates PHOX2B and its target genes in progesterone responsive neuroblastoma cells

    Get PDF
    The paired-like homeobox 2B gene (PHOX2B) encodes a key transcription factor that plays a role in the development of the autonomic nervous system and the neural structures involved in controlling breathing. In humans, PHOX2B over-expression plays a role in the pathogenesis of tumours arising from the sympathetic nervous system such as neuroblastomas, and heterozygous PHOX2B mutations cause Congenital Central Hypoventilation Syndrome (CCHS), a life-threatening neurocristopathy characterised by the defective autonomic control of breathing and involving altered CO2/H+ chemosensitivity. The recovery of CO2/H+ chemosensitivity and increased ventilation have been observed in two CCHS patients using the potent contraceptive progestin desogestrel. Given the central role of PHOX2B in the pathogenesis of CCHS, and the progesterone-mediated effects observed in the disease, we generated progesterone-responsive neuroblastoma cells, and evaluated the effects of 3-Ketodesogestrel (3-KDG), the biologically active metabolite of desogestrel, on the expression of PHOX2B and its target genes. Our findings demonstrate that, through progesterone nuclear receptor PR-B, 3-KDG down-regulates PHOX2B gene expression, by a post-transcriptional mechanism, and its target genes and open up the possibility that this mechanism may contribute to the positive effects observed in some CCHS patients

    Neuroimaging auditory verbal hallucinations in schizophrenia patient and healthy populations

    Get PDF
    BACKGROUND: Auditory verbal hallucinations (AVH) are a cardinal feature of schizophrenia, but they can also appear in otherwise healthy individuals. Imaging studies implicate language networks in the generation of AVH; however, it remains unclear if alterations reflect biologic substrates of AVH, irrespective of diagnostic status, age, or illness-related factors. We applied multimodal imaging to identify AVH-specific pathology, evidenced by overlapping gray or white matter deficits between schizophrenia patients and healthy voice-hearers. METHODS: Diffusion-weighted and T1-weighted magnetic resonance images were acquired in 35 schizophrenia patients with AVH (SCZ-AVH), 32 healthy voice-hearers (H-AVH), and 40 age- and sex-matched controls without AVH. White matter fractional anisotropy (FA) and gray matter thickness (GMT) were computed for each region comprising ICBM-DTI and Desikan-Killiany atlases, respectively. Regions were tested for significant alterations affecting both SCZ-AVH and H-AVH groups, relative to controls. RESULTS: Compared with controls, the SCZ-AVH showed widespread FA and GMT reductions; but no significant differences emerged between H-AVH and control groups. While no overlapping pathology appeared in the overall study groups, younger (<40 years) H-AVH and SCZ-AVH subjects displayed overlapping FA deficits across four regions (p < 0.05): the genu and splenium of the corpus callosum, as well as the anterior limbs of the internal capsule. Analyzing these regions with free-water imaging ascribed overlapping FA abnormalities to tissue-specific anisotropy changes. CONCLUSIONS: We identified white matter pathology associated with the presence of AVH, independent of diagnostic status. However, commonalities were constrained to younger and more homogenous groups, after reducing pathologic variance associated with advancing age and chronicity effects
    corecore