131 research outputs found

    DENIS - a Forthcoming Near Infrared Survey

    Get PDF

    High Resolution Molecular Gas Maps of M33

    Get PDF
    New observations of CO (J=1->0) line emission from M33, using the 25 element BEARS focal plane array at the Nobeyama Radio Observatory 45-m telescope, in conjunction with existing maps from the BIMA interferometer and the FCRAO 14-m telescope, give the highest resolution (13'') and most sensitive (RMS ~ 60 mK) maps to date of the distribution of molecular gas in the central 5.5 kpc of the galaxy. A new catalog of giant molecular clouds (GMCs) has a completeness limit of 1.3 X 10^5 M_sun. The fraction of molecular gas found in GMCs is a strong function of radius in the galaxy, declining from 60% in the center to 20% at galactocentric radius R_gal ~ 4 kpc. Beyond that radius, GMCs are nearly absent, although molecular gas exists. Most (90%) of the emission from low mass clouds is found within 100 pc projected separation of a GMC. In an annulus 2.1< R_gal <4.1 kpc, GMC masses follow a power law distribution with index -2.1. Inside that radius, the mass distribution is truncated, and clouds more massive than 8 X 10^5 M_sun are absent. The cloud mass distribution shows no significant difference in the grand design spiral arms versus the interarm region. The CO surface brightness ratio for the arm to interarm regions is 1.5, typical of other flocculent galaxies.Comment: 14 pages, 14 figures, accepted in ApJ. Some tables poorly typeset in emulateapj; see source files for raw dat

    Giant Molecular Clouds in M33 - I. BIMA All Disk Survey

    Full text link
    We present the first interferometric CO(J=1->0) map of the entire H-alpha disk of M33. The 13" diameter synthesized beam corresponds to a linear resolution of 50 pc, sufficient to distinguish individual giant molecular clouds (GMCs). From these data we generated a catalog of 148 GMCs with an expectation that no more than 15 of the sources are spurious. The catalog is complete down to GMC masses of 1.5 X 10^5 M_sun and contains a total mass of 2.3 X 10^7 M_sun. Single dish observations of CO in selected fields imply that our survey detects ~50% of the CO flux, hence that the total molecular mass of M33 is 4.5 X 10^7 M_sun, approximately 2% of the HI mass. The GMCs in our catalog are confined largely to the central region (R < 4 kpc). They show a remarkable spatial and kinematic correlation with overdense HI filaments; the geometry suggests that the formation of GMCs follows that of the filaments. The GMCs exhibit a mass spectrum dN/dM ~ M^(-2.6 +/- 0.3), considerably steeper than that found in the Milky Way and in the LMC. Combined with the total mass, this steep function implies that the GMCs in M33 form with a characteristic mass of 7 X 10^4 M_sun. More than 2/3 of the GMCs have associated HII regions, implying that the GMCs have a short quiescent period. Our results suggest the rapid assembly of molecular clouds from atomic gas, with prompt onset of massive star formation.Comment: 19 pages, Accepted for Publication in the Astrophysical Journal Supplemen

    Bar imprints on the inner gas kinematics of M33

    Full text link
    We present measurements of the stellar and gaseous velocities in the central 5' of the Local Group spiral M33. The data were obtained with the ARC 3.5m telescope. Blue and red spectra with resolutions from 2 to 4\AA covering the principal gaseous emission and stellar absorption lines were obtained along the major and minor axes and six other position angles. The observed radial velocities of the ionized gas along the photometric major axis of M33 remain flat at ~22 km s^{-1} all the way into the center, while the stellar velocities show a gradual rise from zero to 22 km s^{-1} over that same region. The central star cluster is at or very close to the dynamical center, with a velocity that is in accordance with M33's systemic velocity to within our uncertainties. Velocities on the minor axis are non-zero out to about 1' from the center in both the stars and gas. Together with the major axis velocities, they point at significant deviations from circular rotation. The most likely explanation for the bulk of the velocity patterns are streaming motions along a weak inner bar with a PA close to that of the minor axis, as suggested by previously published IR photometric images. The presence of bar imprints in M33 implies that all major Local Group galaxies are barred. The non-circular motions over the inner 200 pc make it difficult to constrain the shape of M33's inner dark matter halo profile. If the non-circular motions we find in this nearby Sc galaxy are present in other more distant late-type galaxies, they might be difficult to recognize.Comment: 20 pages, 12 figures, ApJ in pres

    ESO Imaging Survey VII. Distant Cluster Candidates over 12 square degrees

    Get PDF
    In this paper the list of candidate clusters identified from the I-band data of the ESO Imaging Survey (EIS) is completed using the images obtained over a total area of about 12 square degrees. Together with the data reported earlier the total I-band coverage of EIS is 17 square degrees, which has yielded a sample of 252 cluster candidates in the redshift range 0.2 \lsim z \lsim 1.3. This is the largest optically-selected sample currently available in the Southern Hemisphere. It is also well distributed in the sky thus providing targets for a variety of VLT programs nearly year round.Comment: 5 pages, 3 figures, submitted to Astronomy & Astrophysic

    Infrared Excess and Molecular Gas in the Galactic Worm GW46.4+5.5

    Get PDF
    We have carried out high-resolution (~3') HI and CO line observations along one-dimensional cuts through the Galactic worm GW46.4+5.5. By comparing the HI data with IRAS data, we have derived the distributions of I_100 excess and tau_100 excess, which are respectively the 100 mum intensity and 100 mum optical depth in excess of what would be expected from HI emission. In two observed regions, we were able to make a detailed comparison of the infrared excess and the CO emission. We have found that tau_100 excess has a very good correlation with the integrated intensity of CO emission, W_CO, but I_100 excess does not. There are two reasons for the poor correlation between I_100 excess and W_CO: firstly, there are regions with enhanced infrared emissivity without CO, and secondly, dust grains associated with molecular gas have a low infrared emissivity. In one region, these two factors completely hide the presence of molecular gas in the infrared. In the second region, we could identify the area with molecular gas, but I_100 excess significantly underestimates the column density of molecular hydrogen because of the second factor mentioned above. We therefore conclude that tau_100 excess, rather than I_100 excess, is an accurate indicator of molecular content along the line of sight. We derive tau_100/N(H)=(1.00+-0.02)*10^-5~(10^20 cm^-2)^-1, and X=N(H_2)/W_CO=~0.7*10^20 cm^-2 (K km s^-1)^-1. Our results suggest that I_100 excess could still be used to estimate the molecular content if the result is multiplied by a correction factor xi_c=_HI/_H_2 (~2 in the second region), which accounts for the different infrared emissivities of atomic and molecular gas. We also discuss some limitations of this work.Comment: 10 pages, 9 postscript figures, uses aas2pp4.sty to be published in Astrophyslcal Journa
    • 

    corecore