4,987 research outputs found

    Structure of the solar corpuscular stream and its interaction with the earth's magnetosphere

    Get PDF
    Structure of solar corpuscular stream and its interaction with earth magnetospher

    Experimental Study of the Effect of External Signal on Microwave Oscillations in a Nonrelativistic Electron Beam with Virtual Cathode

    Get PDF
    The effect of an external harmonic signal on the characteristics of microwave generation in a nonrelativistic electron beam with virtual cathode (VC) formed in a static retarding electric field (low-voltage vircator system) has been experimentally studied. A significant increase in the vircator generation power is observed when the frequency of the external signal is close to the frequency of VC oscillations. At large detunings, a broadband chaotic generation is observed.Comment: 3 pages, 2 figure

    Materials Contrast in Piezoresponse Force Microscopy

    Full text link
    Piezoresponse Force Microscopy contrast in transversally isotropic material corresponding to the case of c+ - c- domains in tetragonal ferroelectrics is analyzed using Green's function theory by Felten et al. [J. Appl. Phys. 96, 563 (2004)]. A simplified expression for PFM signal as a linear combination of relevant piezoelectric constant are obtained. This analysis is extended to piezoelectric material of arbitrary symmetry with weak elastic and dielectric anisotropies. This result provides a framework for interpretation of PFM signals for systems with unknown or poorly known local elastic and dielectric properties, including nanocrystalline materials, ferroelectric polymers, and biopolymers.Comment: 20 pages, 3 figures, 1 table, accepted to Appl. Phys. Lett. (without Appendices), algebraic errors were correcte

    Experimental and Theoretical Investigation into the Effect of the Electron Velocity Distribution on Chaotic Oscillations in an Electron Beam under Virtual Cathode Formation Conditions

    Full text link
    The effect of the electron transverse and longitudinal velocity spread at the entrance to the interaction space on wide-band chaotic oscillations in intense multiple-velocity beams is studied theoretically and numerically under the conditions of formation of a virtual cathode. It is found that an increase in the electron velocity spread causes chaotization of virtual cathode oscillations. An insight into physical processes taking place in a virtual cathode multiple velocity beam is gained by numerical simulation. The chaotization of the oscillations is shown to be associated with additional electron structures, which were separated out by constructing charged particle distribution functions.Comment: 9 pages, 8 figure

    Mixing Effects in the Crystallization of Supercooled Quantum Binary Liquids

    Get PDF
    By means of Raman spectroscopy of liquid microjets we have investigated the crystallization process of supercooled quantum liquid mixtures composed of parahydrogen (pH2_2) diluted with small amounts of up to 5\% of either neon or orthodeuterium (oD2_2), and of oD2_2 diluted with either Ne or pH2_2. We show that the introduction of Ne impurities affects the crystallization kinetics in both the pH2_2-Ne and oD2_2-Ne mixtures in terms of a significant reduction of the crystal growth rate, similarly to what found in our previous work on supercooled pH2_2-oD2_2 liquid mixtures [M. K\"uhnel et {\it al.}, Phys. Rev. B \textbf{89}, 180506(R) (2014)]. Our experimental results, in combination with path-integral simulations of the supercooled liquid mixtures, suggest in particular a correlation between the measured growth rates and the ratio of the effective particle sizes originating from quantum delocalization effects. We further show that the crystalline structure of the mixture is also affected to a large extent by the presence of the Ne impurities, which likely initiate the freezing process through the formation of Ne crystallites.Comment: 19 pages, 7 figures, submitted to J. Chem. Phy

    Dynamic Behavior in Piezoresponse Force Microscopy

    Full text link
    Frequency dependent dynamic behavior in Piezoresponse Force Microscopy (PFM) implemented on a beam-deflection atomic force microscope (AFM) is analyzed using a combination of modeling and experimental measurements. The PFM signal comprises contributions from local electrostatic forces acting on the tip, distributed forces acting on the cantilever, and three components of the electromechanical response vector. These interactions result in the bending and torsion of the cantilever, detected as vertical and lateral PFM signals. The relative magnitudes of these contributions depend on geometric parameters of the system, the stiffness and frictional forces of tip-surface junction, and operation frequencies. The dynamic signal formation mechanism in PFM is analyzed and conditions for optimal PFM imaging are formulated. The experimental approach for probing cantilever dynamics using frequency-bias spectroscopy and deconvolution of electromechanical and electrostatic contrast is implemented.Comment: 65 pages, 15 figures, high quality version available upon reques

    Diffraction of real and virtual photons in a pyrolytic graphite crystal as source of intensive quasimonochromatic X-ray beam

    Get PDF
    A series of experiments on the parametric X-rays radiation (PXR) generation and radiation soft component diffraction of relativistic electrons in pyrolytic graphite (PG) crystals have been carried out at the Tomsk synchrotronyesBelgorod State Universit

    Nanoelectromechanics of Piezoresponse Force Microscopy

    Full text link
    To achieve quantitative interpretation of Piezoresponse Force Microscopy (PFM), including resolution limits, tip bias- and strain-induced phenomena and spectroscopy, analytical representations for tip-induced electroelastic fields inside the material are derived for the cases of weak and strong indentation. In the weak indentation case, electrostatic field distribution is calculated using image charge model. In the strong indentation case, the solution of the coupled electroelastic problem for piezoelectric indentation is used to obtain the electric field and strain distribution in the ferroelectric material. This establishes a complete continuum mechanics description of the PFM contact mechanics and imaging mechanism. The electroelastic field distribution allows signal generation volume in PFM to be determined. These rigorous solutions are compared with the electrostatic point charge and sphere-plane models, and the applicability limits for asymptotic point charge and point force models are established. The implications of these results for ferroelectric polarization switching processes are analyzed.Comment: 81 pages, 19 figures, to be published in Phys. Rev.
    corecore