5,298 research outputs found

    Living \u3cem\u3eMore Than\u3c/em\u3e Just Enough for the City: Persistence of High-Quality Vegetation in Natural Areas in an Urban Setting

    Get PDF
    Urban environments pose special challenges to flora, including altered disturbance regimes, habitat fragmentation, and increased opportunity for invasion by non-native species. In addition, urban natural area represents most people’s contact with nature, given the majority of the world’s population currently live in cities. We used coefficients of conservatism (C-values), a system that ranks species based on perceived fidelity to remnant native plant communities that retain ecological integrity, to quantify habitat quality of 14 sites covering 850 ha within the city of Indianapolis, Indiana, in the Midwestern United States. All sites contained significant natural area and were inventoried via intensive complete censuses throughout one or two growing seasons within the last 15 years. Mean C-values for five sites were high, especially when compared to values reported for the highest quality preserves in central Indiana. However, for most sites the difference in mean C-value with and without non-natives was rather high, meaning that natural quality is likely to have been compromised by the presence of non-natives. Sites receiving the highest levels of stewardship and those with the least public access via trails had the highest mean native C-values. A total of 34 invasive non-native species were found across all 14 sites. Most were woody species. Mean C-value over all sites was significantly negatively correlated with the number of non-natives present, especially those considered invasive. These results demonstrate for the Indianapolis area, and likely other urbanized Midwestern cities, remnant natural areas can retain high ecological value, especially if they receive regular environmental stewardship

    Duality, the Semi-Circle Law and Quantum Hall Bilayers

    Get PDF
    There is considerable experimental evidence for the existence in Quantum Hall systems of an approximate emergent discrete symmetry, Γ0(2)⊂SL(2,Z)\Gamma_0(2) \subset SL(2,Z). The evidence consists of the robustness of the tests of a suite a predictions concerning the transitions between the phases of the system as magnetic fields and temperatures are varied, which follow from the existence of the symmetry alone. These include the universality of and quantum numbers of the fixed points which occur in these transitions; selection rules governing which phases may be related by transitions; and the semi-circular trajectories in the Ohmic-Hall conductivity plane which are followed during the transitions. We explore the implications of this symmetry for Quantum Hall systems involving {\it two} charge-carrying fluids, and so obtain predictions both for bilayer systems and for single-layer systems for which the Landau levels have a spin degeneracy. We obtain similarly striking predictions which include the novel new phases which are seen in these systems, as well as a prediction for semicircle trajectories which are traversed by specific combinations of the bilayer conductivities as magnetic fields are varied at low temperatures.Comment: 12 pages, 8 figures; discussion of magnetic field dependence modified and figures and references updated in v

    Yangian in the Twistor String

    Get PDF
    We study symmetries of the quantized open twistor string. In addition to global PSL(4|4) symmetry, we find non-local conserved currents. The associated non-local charges lead to Ward identities which show that these charges annihilate the string gluon tree amplitudes, and have the same form as symmetries of amplitudes in N=4 super conformal Yang Mills theory. We describe how states of the open twistor string form a realization of the PSL(4|4) Yangian superalgebra.Comment: 37 pages, 4 figure

    A projective Dirac operator on CP^2 within fuzzy geometry

    Full text link
    We propose an ansatz for the commutative canonical spin_c Dirac operator on CP^2 in a global geometric approach using the right invariant (left action-) induced vector fields from SU(3). This ansatz is suitable for noncommutative generalisation within the framework of fuzzy geometry. Along the way we identify the physical spinors and construct the canonical spin_c bundle in this formulation. The chirality operator is also given in two equivalent forms. Finally, using representation theory we obtain the eigenspinors and calculate the full spectrum. We use an argument from the fuzzy complex projective space CP^2_F based on the fuzzy analogue of the unprojected spin_c bundle to show that our commutative projected spin_c bundle has the correct SU(3)-representation content.Comment: reduced to 27 pages, minor corrections, minor improvements, typos correcte

    Complete Equivalence Between Gluon Tree Amplitudes in Twistor String Theory and in Gauge Theory

    Get PDF
    The gluon tree amplitudes of open twistor string theory, defined as contour integrals over the ACCK link variables, are shown to satisfy the BCFW relations, thus confirming that they coincide with the corresponding amplitudes in gauge field theory. In this approach, the integration contours are specified as encircling the zeros of certain constraint functions that force the appropriate relation between the link variables and the twistor string world-sheet variables. To do this, methods for calculating the tree amplitudes using link variables are developed further including diagrammatic methods for organizing and performing the calculations.Comment: 38 page

    Functional Analysis of Subunit e of the F\u3csub\u3e1\u3c/sub\u3eF\u3csub\u3eo\u3c/sub\u3e-ATP Synthase of the Yeast \u3cem\u3eSaccharomyces cerevisiae\u3c/em\u3e: Importance of the N-Terminal Membrane Anchor Region

    Get PDF
    Mitochondrial F1Fo-ATP synthase complexes do not exist as physically independent entities but rather form dimeric and possibly oligomeric complexes in the inner mitochondrial membrane. Stable dimerization of two F1Fo-monomeric complexes involves the physical association of two membrane-embedded Fo-sectors. Previously, formation of the ATP synthase dimeric-oligomeric network was demonstrated to play a critical role in modulating the morphology of the mitochondrial inner membrane. In Saccharomyces cerevisiae, subunit e (Su e) of the Fo-sector plays a central role in supporting ATP synthase dimerization. The Su e protein is anchored to the inner membrane via a hydrophobic region located at its N-terminal end. The hydrophilic C-terminal region of Su e resides in the intermembrane space and contains a conserved coiled-coil motif. In the present study, we focused on characterizing the importance of these regions for the function of Su e. We created a number of C-terminal-truncated derivatives of the Su e protein and expressed them in the Su e null yeast mutant. Mitochondria were isolated from the resulting transformant strains, and a number of functions of Su e were analyzed. Our results indicate that the N-terminal hydrophobic region plays important roles in the Su e-dependent processes of mitochondrial DNA maintenance, modulation of mitochondrial morphology, and stabilization of the dimer-specific Fo subunits, subunits g and k. Furthermore, we show that the C-terminal coiled-coil region of Su e functions to stabilize the dimeric form of detergent-solubilized ATP synthase complexes. Finally, we propose a model to explain how Su e supports the assembly of the ATP synthase dimers-oligomers in the mitochondrial membrane

    Context-specific activation of hippocampus and SN/VTA by reward is related to enhanced long-term memory for embedded objects

    Get PDF
    Animal studies indicate that hippocampal representations of environmental context modulate reward-related processing in the substantia nigra and ventral tegmental area (SN/VTA), a major origin of dopamine in the brain. Using functional magnetic resonance imaging (fMRI) in humans, we investigated the neural specificity of context-reward associations under conditions where the presence of perceptually similar neutral contexts imposed high demands on a putative hippocampal function, pattern separation. The design also allowed us to investigate how contextual reward enhances long-term memory for embedded neutral objects. SN/VTA activity underpinned specific context-reward associations in the face of perceptual similarity. A reward-related enhancement of long-term memory was restricted to the condition where the rewarding and the neutral contexts were perceptually similar, and in turn was linked to co-activation of the hippocampus (subfield DG/CA3) and SN/VTA. Thus, an ability of contextual reward to enhance memory for focal objects is closely linked to context-related engagement of hippocampal-SN/VTA circuitry
    • 

    corecore