We propose an ansatz for the commutative canonical spin_c Dirac operator on
CP^2 in a global geometric approach using the right invariant (left action-)
induced vector fields from SU(3). This ansatz is suitable for noncommutative
generalisation within the framework of fuzzy geometry. Along the way we
identify the physical spinors and construct the canonical spin_c bundle in this
formulation. The chirality operator is also given in two equivalent forms.
Finally, using representation theory we obtain the eigenspinors and calculate
the full spectrum. We use an argument from the fuzzy complex projective space
CP^2_F based on the fuzzy analogue of the unprojected spin_c bundle to show
that our commutative projected spin_c bundle has the correct
SU(3)-representation content.Comment: reduced to 27 pages, minor corrections, minor improvements, typos
correcte