239 research outputs found

    Preliminary results on the long term operation of RPCs with eco-friendly gas mixtures under irradiation at the CERN Gamma Irradiation Facility

    Full text link
    Since 2019 a collaboration between researchers from various institutes and experiments (i.e. ATLAS, CMS, ALICE, LHCb/SHiP and the CERN EP-DT group), has been operating several RPCs with diverse electronics, gas gap thicknesses and detector layouts at the CERN Gamma Irradiation Facility (GIF++). The studies aim at assessing the performance of RPCs when filled with new eco-friendly gas mixtures in avalanche mode and in view of evaluating possible ageing effects after long high background irradiation periods, e.g. High-Luminosity LHC phase. This challenging research is also part of a task of the European AidaInnova project. A promising eco-friendly gas identified for RPC operation is the tetrafluoruropropene (C3_{3}H2_{2}F4_{4}, commercially known as HFO-1234ze) that has been studied at the CERN GIF++ in combination with different percentages of CO2_2. Between the end of 2021 and 2022 several beam tests have been carried out to establish the performance of RPCs operated with such mixtures before starting the irradiation campaign for the ageing study. Results of these tests for different RPCs layouts and different gas mixtures, under increasing background rates are presented here, together with the preliminary outcome of the detector ageing tests

    Photoproduction of low-pT J/ψ from peripheral to central Pb–Pb collisions at 5.02 TeV

    Get PDF
    An excess of J/ψ yield at very low transverse momentum (pT < 0.3 GeV/c), originating from coherent photoproduction, is observed in peripheral and semicentral hadronic Pb–Pb collisions at a center-of-mass energy per nucleon pair of sqrt(sNN) = 5.02 TeV. The measurement is performed with the ALICE detector via the dimuon decay channel at forward rapidity (2.5 < y <4). The nuclear modification factor at very low pT and the coherent photoproduction cross section are measured as a function of centrality down to the 10% most central collisions. These results extend the previous study at sqrt(sNN) = 2.76 TeV, confirming the clear excess over hadronic production in the pT range 0-0.3 GeV/c and the centrality range 70–90%, and establishing an excess with a significance greater than 5σ also in the 50–70% and 30–50% centrality ranges. The results are compared with earlier measurements at sqrt(sNN) = 2.76 TeV and with different theoretical predictions aiming at describing how coherent photoproduction occurs in hadronic interactions with nuclear overlap

    Measurement of electrons from beauty-hadron decays in pp and Pb-Pb collisions at sNN=5.02 TeV

    Get PDF
    The production of electrons from beauty-hadron decays was measured at midrapidity in proton-proton (pp) and central Pb-Pb collisions at center-of-mass energy per nucleon-nucleon pair √s NN = 5.02 TeV, using the ALICE detector at the LHC. The cross section measured in pp collisions in the transverse momentum interval 2 < pT < 8 GeV/c was compared with models based on perturbative quantum chromodynamics calculations. The yield in the 10% most central Pb-Pb collisions, measured in the interval 2 < pT < 26 GeV/c, was used to compute the nuclear modification factor RAA, extrapolating the pp reference cross section to pT larger than 8 GeV/c. The measured R AA shows significant suppression of the yield of electrons from beauty-hadron decays at high pT and does not show a significant dependence above 8 GeV/c within uncertainties. The results are de- scribed by several theoretical models based on different implementations of the interaction of heavy quarks with a quark-gluon plasma, which predict a smaller energy loss for beauty quarks compared to light and charm quark

    First measurement of Ωc 0 production in pp collisions at s=13 TeV

    Get PDF
    The inclusive production of the charm–strange baryon Omega_c^0 is measured for the first time via its hadronic decay into Omega-pi+ at midrapidity (|y|<0.5) in proton–proton (pp) collisions at the centre-of-mass energy sqrt(s) = 13 TeV with the ALICE detector at the LHC. The transverse momentum (pT) differential cross section multiplied by the branching ratio is presented in the interval 2 < pT < 12 GeV/c . The pT dependence of the Omega_C^0-baryon production relative to the prompt D^0-meson and to the prompt Csi_C^0-baryon production is compared to various models that take different hadronisation mechanisms into consideration. In the measured pT interval, the ratio of the pT-integrated cross sections of Omega_c^0 and prompt Lambda_c^+ baryons multiplied by the Omega- pi+ branching ratio is found to be larger by a factor of about 20 with a significance of about 4σ when compared to e+e- collisions

    Investigation of K+K- interactions via femtoscopy in Pb-Pb collisions at sNN =2.76 TeV at the CERN Large Hadron Collider

    Get PDF
    Femtoscopic correlations of nonidentical charged kaons (K+K-) are studied in Pb-Pb collisions at a center-of-mass energy per nucleon-nucleon collision sNN=2.76 TeV by ALICE at the CERN Large Hadron Collider. One-dimensional K+K- correlation functions are analyzed in three centrality classes and eight intervals of particle-pair transverse momentum. The LednickĂœ and Luboshitz interaction model used in the K+K- analysis includes the final-state Coulomb interactions between kaons and the final-state interaction through a0(980) and f0(980) resonances. The mass of f0(980) and coupling were extracted from the fit to K+K- correlation functions using the femtoscopic technique. The measured mass and width of the f0(980) resonance are consistent with other published measurements. The height of the φ(1020) meson peak present in the K+K- correlation function rapidly decreases with increasing source radius, qualitatively in agreement with an inverse volume dependence. A phenomenological fit to this trend suggests that the φ(1020) meson yield is dominated by particles produced directly from the hadronization of the system. The small fraction subsequently produced by final-state interactions could not be precisely quantified with data presented in this paper and will be assessed in future work

    Measurement of the Lifetime and Λ Separation Energy of _{Λ}^{3}H

    Get PDF
    The most precise measurements to date of the _{Λ}^{3}H lifetime τ and Λ separation energy B_{Λ} are obtained using the data sample of Pb-Pb collisions at sqrt[s_{NN}]=5.02  TeV collected by ALICE at the LHC. The _{Λ}^{3}H is reconstructed via its charged two-body mesonic decay channel (_{Λ}^{3}H→^{3}He+π^{-} and the charge-conjugate process). The measured values τ=[253±11(stat)±6(syst)]  ps and B_{Λ}=[102±63(stat)±67(syst)]  keV are compatible with predictions from effective field theories and confirm that the _{Λ}^{3}H structure is consistent with a weakly bound system
    • 

    corecore