240 research outputs found

    Carbamazepine on a carbamazepine monolayer forms unique 1D supramolecular assemblies

    Get PDF
    High-resolution STM imaging of the structures formed by carbamazepine molecules adsorbed onto a pseudo-ordered carbamazepine monolayer on Au(111) shows the formation of previously unreported 1-dimensional supramolecular assemblies

    Controlling a spillover pathway with the molecular cork effect

    Get PDF
    Spillover of reactants from one active site to another is important in heterogeneous catalysis and has recently been shown to enhance hydrogen storage in a variety of materials. The spillover of hydrogen is notoriously hard to detect or control. We report herein that the hydrogen spillover pathway on a Pd/Cu alloy can be controlled by reversible adsorption of a spectator molecule. Pd atoms in the Cu surface serve as hydrogen dissociation sites from which H atoms can spillover onto surrounding Cu regions. Selective adsorption of CO at these atomic Pd sites is shown to either prevent the uptake of hydrogen on, or inhibit its desorption from, the surface. In this way, the hydrogen coverage on the whole surface can be controlled by molecular adsorption at a minority site, which we term a ‘molecular cork’ effect. We show that the molecular cork effect is present during a surface catalysed hydrogenation reaction and illustrate how it can be used as a method for controlling uptake and release of hydrogen in a model storage syste

    Smoking in asthma is associated with elevated levels of corticosteroid resistant sputum cytokines—an exploratory study

    Get PDF
    <p>Background: Current cigarette smoking is associated with reduced acute responses to corticosteroids and worse clinical outcomes in stable chronic asthma. The mechanism by which current smoking promotes this altered behavior is currently unclear. Whilst cytokines can induce corticosteroid insensitivity in-vitro, how current and former smoking affects airway cytokine concentrations and their responses to oral corticosteroids in stable chronic asthma is unclear.</p> <p>Objectives: To examine blood and sputum cytokine concentrations in never, ex and current smokers with asthma before and after oral corticosteroids.</p> <p>Methods: Exploratory study utilizing two weeks of oral dexamethasone (equivalent to 40 mg/day prednisolone) in 22 current, 21 never and 10 ex-smokers with asthma. Induced sputum supernatant and plasma was obtained before and after oral dexamethasone. 25 cytokines were measured by multiplex microbead system (Invitrogen, UK) on a Luminex platform.</p> <p>Results: Smokers with asthma had elevated sputum cytokine interleukin (IL) -6, -7, and -12 concentrations compared to never smokers with asthma. Few sputum cytokine concentrations changed in response to dexamethasone IL-17 and IFNα increased in smokers, CCL4 increased in never smokers and CCL5 and CXCL10 reduced in ex-smokers with asthma. Ex-smokers with asthma appeared to have evidence of an ongoing corticosteroid resistant elevation of cytokines despite smoking cessation. Several plasma cytokines were lower in smokers wi</p> <p>Conclusion: Cigarette smoking in asthma is associated with a corticosteroid insensitive increase in multiple airway cytokines. Distinct airway cytokine profiles are present in current smokers and never smokers with asthma and could provide an explanatory mechanism for the altered clinical behavior observed in smokers with asthma.</p&gt

    Quantum flutter of supersonic particles in one-dimensional quantum liquids

    Full text link
    The non-equilibrium dynamics of strongly correlated many-body systems exhibits some of the most puzzling phenomena and challenging problems in condensed matter physics. Here we report on essentially exact results on the time evolution of an impurity injected at a finite velocity into a one-dimensional quantum liquid. We provide the first quantitative study of the formation of the correlation hole around a particle in a strongly coupled many-body quantum system, and find that the resulting correlated state does not come to a complete stop but reaches a steady state which propagates at a finite velocity. We also uncover a novel physical phenomenon when the impurity is injected at supersonic velocities: the correlation hole undergoes long-lived coherent oscillations around the impurity, an effect we call quantum flutter. We provide a detailed understanding and an intuitive physical picture of these intriguing discoveries, and propose an experimental setup where this physics can be realized and probed directly.Comment: 13 pages, 9 figure

    Significant quantum effects in hydrogen activation

    Get PDF
    Dissociation of molecular hydrogen is an important step in a wide variety of chemical, biological, and physical processes. Due to the light mass of hydrogen, it is recognized that quantum effects are often important to its reactivity. However, understanding how quantum effects impact the reactivity of hydrogen is still in its infancy. Here, we examine this issue using a well-defined Pd/Cu(111) alloy that allows the activation of hydrogen and deuterium molecules to be examined at individual Pd atom surface sites over a wide range of temperatures. Experiments comparing the uptake of hydrogen and deuterium as a function of temperature reveal completely different behavior of the two species. The rate of hydrogen activation increases at lower sample temperature, whereas deuterium activation slows as the temperature is lowered. Density functional theory simulations in which quantum nuclear effects are accounted for reveal that tunneling through the dissociation barrier is prevalent for H2 up to ∼190 K and for D2 up to ∼140 K. Kinetic Monte Carlo simulations indicate that the effective barrier to H2 dissociation is so low that hydrogen uptake on the surface is limited merely by thermodynamics, whereas the D2 dissociation process is controlled by kinetics. These data illustrate the complexity and inherent quantum nature of this ubiquitous and seemingly simple chemical process. Examining these effects in other systems with a similar range of approaches may uncover temperature regimes where quantum effects can be harnessed, yielding greater control of bond-breaking processes at surfaces and uncovering useful chemistries such as selective bond activation or isotope separation

    Ensuring competency in end-of-life care: controlling symptoms

    Get PDF
    BACKGROUND: Palliative medicine is assuming an increasingly important role in patient care. The Education for Physicians in End-of-life Care (EPEC) Project is an ambitious program to increase core palliative care skills for all physicians. It is not intended to transmit specialty level competencies in palliative care. METHOD: The EPEC Curriculum was developed to be a comprehensive syllabus including trainer notes, multiple approaches to teaching the material, slides, and videos of clinical encounters to trigger discussion are provided. The content was developed through a combination of expert opinion, participant feedback and selected literature review. Content development was guided by the goal of teaching core competencies not included in the training of generalist and non-palliative medicine specialist physicians. RESULTS: Whole patient assessment forms the basis for good symptom control. Approaches to the medical management of pain, depression, anxiety, breathlessness (dyspnea), nausea/vomiting, constipation, fatigue/weakness and the symptoms common during the last hours of life are described. CONCLUSION: While some physicians will have specialist palliative care services upon which to call, most in the world will need to provide the initial approaches to symptom control at the end-of-life

    Financial Systems and Industrial Policy in Germany and Great Britain: The Limits of Convergence

    Full text link
    • …
    corecore