1,417 research outputs found

    Learning about knowledge: A complex network approach

    Full text link
    This article describes an approach to modeling knowledge acquisition in terms of walks along complex networks. Each subset of knowledge is represented as a node, and relations between such knowledge are expressed as edges. Two types of edges are considered, corresponding to free and conditional transitions. The latter case implies that a node can only be reached after visiting previously a set of nodes (the required conditions). The process of knowledge acquisition can then be simulated by considering the number of nodes visited as a single agent moves along the network, starting from its lowest layer. It is shown that hierarchical networks, i.e. networks composed of successive interconnected layers, arise naturally as a consequence of compositions of the prerequisite relationships between the nodes. In order to avoid deadlocks, i.e. unreachable nodes, the subnetwork in each layer is assumed to be a connected component. Several configurations of such hierarchical knowledge networks are simulated and the performance of the moving agent quantified in terms of the percentage of visited nodes after each movement. The Barab\'asi-Albert and random models are considered for the layer and interconnecting subnetworks. Although all subnetworks in each realization have the same number of nodes, several interconnectivities, defined by the average node degree of the interconnection networks, have been considered. Two visiting strategies are investigated: random choice among the existing edges and preferential choice to so far untracked edges. A series of interesting results are obtained, including the identification of a series of plateaux of knowledge stagnation in the case of the preferential movements strategy in presence of conditional edges.Comment: 18 pages, 19 figure

    (Meta-)stable reconstructions of the diamond(111) surface: interplay between diamond- and graphite-like bonding

    Get PDF
    Off-lattice Grand Canonical Monte Carlo simulations of the clean diamond (111) surface, based on the effective many-body Brenner potential, yield the (2×1)(2\times1) Pandey reconstruction in agreement with \emph{ab-initio} calculations and predict the existence of new meta-stable states, very near in energy, with all surface atoms in three-fold graphite-like bonding. We believe that the long-standing debate on the structural and electronic properties of this surface could be solved by considering this type of carbon-specific configurations.Comment: 4 pages + 4 figures, Phys. Rev. B Rapid Comm., in press (15Apr00). For many additional details (animations, xyz files) see electronic supplement to this paper at http://www.sci.kun.nl/tvs/carbon/meta.htm

    A combined XAS and XRD Study of the High-Pressure Behaviour of GaAsO4 Berlinite

    Full text link
    Combined X-ray absorption spectroscopy (XAS) and X-ray diffraction (XRD) experiments have been carried out on GaAsO4 (berlinite structure) at high pressure and room temperature. XAS measurements indicate four-fold to six-fold coordination changes for both cations. The two local coordination transformations occur at different rates but appear to be coupled. A reversible transition to a high pressure crystalline form occurs around 8 GPa. At a pressure of about 12 GPa, the system mainly consists of octahedral gallium atoms and a mixture of arsenic in four-fold and six-fold coordinations. A second transition to a highly disordered material with both cations in six-fold coordination occurs at higher pressures and is irreversible.Comment: 8 pages, 5 figures, LaTeX2

    Angle resolved photoemission spectroscopy of Sr_2CuO_2Cl_2 - a revisit

    Full text link
    We have investigated the lowest binding-energy electronic structure of the model cuprate Sr_2CuO_2Cl_2 using angle resolved photoemission spectroscopy (ARPES). Our data from about 80 cleavages of Sr_2CuO_2Cl_2 single crystals give a comprehensive, self-consistent picture of the nature of the first electron-removal state in this model undoped CuO_2-plane cuprate. Firstly, we show a strong dependence on the polarization of the excitation light which is understandable in the context of the matrix element governing the photoemission process, which gives a state with the symmetry of a Zhang-Rice singlet. Secondly, the strong, oscillatory dependence of the intensity of the Zhang-Rice singlet on the exciting photon-energy is shown to be consistent with interference effects connected with the periodicity of the crystal structure in the crystallographic c-direction. Thirdly, we measured the dispersion of the first electron-removal states along G->(pi,pi) and G->(pi,0), the latter being controversial in the literature, and have shown that the data are best fitted using an extended t-J-model, and extract the relevant model parameters. An analysis of the spectral weight of the first ionization states for different excitation energies within the approach used by Leung et al. (Phys. Rev. B56, 6320 (1997)) results in a strongly photon-energy dependent ratio between the coherent and incoherent spectral weight. The possible reasons for this observation and its physical implications are discussed.Comment: 10 pages, 8 figure

    The {\eta}'-carbon potential at low meson momenta

    Full text link
    The production of η′\eta^\prime mesons in coincidence with forward-going protons has been studied in photon-induced reactions on 12^{12}C and on a liquid hydrogen (LH2_2) target for incoming photon energies of 1.3-2.6 GeV at the electron accelerator ELSA. The η′\eta^\prime mesons have been identified via the η′→π0π0η→6γ\eta^\prime\rightarrow \pi^0 \pi^0\eta \rightarrow 6 \gamma decay registered with the CBELSA/TAPS detector system. Coincident protons have been identified in the MiniTAPS BaF2_2 array at polar angles of 2∘≤θp≤11∘2^{\circ} \le \theta _{p} \le 11^{\circ}. Under these kinematic constraints the η′\eta^\prime mesons are produced with relatively low kinetic energy (≈\approx 150 MeV) since the coincident protons take over most of the momentum of the incident-photon beam. For the C-target this allows the determination of the real part of the η′\eta^\prime-carbon potential at low meson momenta by comparing with collision model calculations of the η′\eta^\prime kinetic energy distribution and excitation function. Fitting the latter data for η′\eta^\prime mesons going backwards in the center-of-mass system yields a potential depth of V = −-(44 ±\pm 16(stat)±\pm15(syst)) MeV, consistent with earlier determinations of the potential depth in inclusive measurements for average η′\eta^\prime momenta of ≈\approx 1.1 GeV/cc. Within the experimental uncertainties, there is no indication of a momentum dependence of the η′\eta^\prime-carbon potential. The LH2_2 data, taken as a reference to check the data analysis and the model calculations, provide differential and integral cross sections in good agreement with previous results for η′\eta^\prime photoproduction off the free proton.Comment: 9 pages, 13 figures. arXiv admin note: text overlap with arXiv:1608.0607
    • …
    corecore