1,310 research outputs found

    Temperature increase during composites polymerisation using two LED curing lights

    Get PDF
    The aim of curing light technology has been the development of lights that would result in faster curing of resin composites and less heat generation (Aravamudhan et al., Dent Mater 2006). The purpose of this in vitro study was to evaluate thermal changes on the tooth structures during the exposure of two different light emitting diode curing units (LED)

    An Update of Eyeglasses-Supported Nasal–Facial Prosthetic Rehabilitation of Cancer Patients with Post-Surgical Complications: A Case Report

    Get PDF
    Featured Application: This case report aims to describe an update of the digital protocol for the fabrication of a facial prosthesis for those patients who cannot be rehabilitated with plastic surgery because of post-surgical complications after maxillofacial surgery. In detail, it describes the application of the digital protocol to a mid-facial defect. The innovation proposed is oriented to simplify the procedures and reduce the time and cost of the process, aiming to recover the quality of life of inoperable patients. This case report aims to describe novel steps in the digital design/manufacturing of facial prostheses for cancer patients with wide inoperable residual defects, with a focus on a case of a mid-facial defect. A facial scanner was used to make an impression of the post-surgical residual defect and to digitalize it. The daughter’s face scan was used for reconstructing the missing anatomy. Using 3D printing technologies, try-in prototypes were produced in silicone material. The substructure was laser melted. The final prosthesis was relined directly onto the patient’s defect. The prosthesis resulted in a very low weight and a high elasticity of the external margins. The laser-melted substructure ensured the necessary rigidity with minimum thickness

    INTERACTION BETWEEN NANOFILLED COMPOSITES AND POLYWAVE MULTILED CURING LAMPS: AN IN VITRO STUDY

    Get PDF
    8nonenoneBattaglia V; Bergantin E; Paolino D; Coero Borga FA; Cadenaro M; Breschi L; Berutti E; Scotti N.Battaglia, V; Bergantin, E; Paolino, D; Coero Borga, Fa; Cadenaro, Milena; Breschi, Lorenzo; Berutti, E; Scotti, Nicol

    Evaluation of trueness and precision of removable partial denture metal frameworks manufactured with digital technology and different materials

    Get PDF
    PURPOSE. The aim of this study is to evaluate the accuracy of removable partial denture (RPD) frameworks produced using different digital protocols. MATERIALS AND METHODS. 80 frameworks for RPDs were produced using CAD-CAM technology and divided into four groups of twenty (n = 20): Group 1, Titanium frameworks manufactured by digital metal laser sintering (DMLS); Group 2, Co-Cr frameworks manufactured by DMLS; Group 3, Polyamide PA12 castable resin manufactured by multi-jet fusion (MJF); and Group 4, Metal (Co-Cr) casting by using lost-wax technique. After the digital acquisition, eight specific areas were selected in order to measure the Δ-error value at the intaglio surface of RPD. The minimum value required for point sampling density (0.4 mm) was derived from the sensitivity analysis. The obtained Δ-error mean value was used for comparisons: 1. between different manufacturing processes; 2. between different manufacturing techniques in the same area of interest (AOI); and 3. between different AOI of the same group. RESULTS. The Δ-error mean value of each group ranged between -0.002 (Ti) and 0.041 (Co-Cr) mm. The Pearson’s Chi-squared test revealed significant differences considering all groups paired two by two, except for group 3 and 4. The multiple comparison test documented a significant difference for each AOI among group 1, 3, and 4. The multiple comparison test showed significant differences among almost all different AOIs of each group. CONCLUSION. All Δ-mean error values of all digital protocols for manufacturing RPD frameworks optimally fit within the clinical tolerance limit of trueness and precision

    In situ calibration of magnetic field coils using free-induction decay of atomic alignment

    Get PDF
    We propose a precision method for the in situ calibration of a three-axis coil system based on the free-induction decay of spin-aligned atoms. In addition, we present a simple and efficient method for measuring the three-vector components of a residual magnetic field
    • …
    corecore