3,011 research outputs found

    Magnetic spheres in microwave cavities

    Full text link
    We apply Mie scattering theory to study the interaction of magnetic spheres with microwaves in cavities beyond the magnetostatic and rotating wave approximations. We demonstrate that both strong and ultra-strong coupling can be realized for a stand alone magnetic spheres made from yttrium iron garnet (YIG), acting as an efficient microwave antenna. The eigenmodes of YIG spheres with radii of the order mm's display distinct higher angular momentum character that has been observed in experiments.Comment: 7 pages, 5 figure

    The search for black hole binaries using a genetic algorithm

    Full text link
    In this work we use genetic algorithm to search for the gravitational wave signal from the inspiralling massive Black Hole binaries in the simulated LISA data. We consider a single signal in the Gaussian instrumental noise. This is a first step in preparation for analysis of the third round of the mock LISA data challenge. We have extended a genetic algorithm utilizing the properties of the signal and the detector response function. The performance of this method is comparable, if not better, to already existing algorithms.Comment: 11 pages, 4 figures, proceeding for GWDAW13 (Puerto Rico

    Computer-Aided Design System Application at Conceptual Stage of Unmanned Air Vehicle Life Cycle

    Get PDF
    The steps of computer-aided design system application at conceptual stage of unmanned air vehicle life cycle are considered. Sequential and iterative approach to an aircraft design process are compared

    Optimal mode matching in cavity optomagnonics

    Full text link
    Inelastic scattering of photons is a promising technique to manipulate magnons but it suffers from weak intrinsic coupling. We theoretically discuss an idea to increase optomagnonic coupling in optical whispering gallery mode cavities, by generalizing previous analysis to include the exchange interaction. We predict that the optomagnonic coupling constant to surface magnons in yttrium iron garnet (YIG) spheres with radius 300μ300\,\mathrm{\mu}m can be up to 4040 times larger than that to the macrospin Kittel mode. Whereas this enhancement falls short of the requirements for magnon manipulation in YIG, nanostructuring and/or materials with larger magneto-optical constants can bridge this gap.Comment: Comments welcom

    Quantum Hall Effect in Bernal Stacked and Twisted Bilayer Graphene Grown on Cu by Chemical Vapor Deposition

    Full text link
    We examine the quantum Hall effect in bilayer graphene grown on Cu substrates by chemical vapor deposition. Spatially resolved Raman spectroscopy suggests a mixture of Bernal (A-B) stacked and rotationally faulted (twisted) domains. Magnetotransport measurements performed on bilayer domains with a wide 2D band reveal quantum Hall states (QHSs) at filling factors ν=4,8,12\nu=4, 8, 12 consistent with a Bernal stacked bilayer, while magnetotransport measurements in bilayer domains defined by a narrow 2D band show a superposition of QHSs of two independent monolayers. The analysis of the Shubnikov-de Haas oscillations measured in twisted graphene bilayers provides the carrier density in each layer as a function of the gate bias and the inter-layer capacitance.Comment: 5 pages, 4 figure

    Dilaton Cosmology, Noncommutativity and Generalized Uncertainty Principle

    Full text link
    The effects of noncommutativity and of the existence of a minimal length on the phase space of a dilatonic cosmological model are investigated. The existence of a minimum length, results in the Generalized Uncertainty Principle (GUP), which is a deformed Heisenberg algebra between the minisuperspace variables and their momenta operators. We extend these deformed commutating relations to the corresponding deformed Poisson algebra. For an exponential dilaton potential, the exact classical and quantum solutions in the commutative and noncommutative cases, and some approximate analytical solutions in the case of GUP, are presented and compared.Comment: 16 pages, 3 figures, typos correcte

    Change of Inertia Tensor Due to a Severed Radial Boom for Spinning Spacecraft

    Get PDF
    Many spinning spacecraft have long, flexible, radial booms to carry science instrumentation. These radial booms often have low mass but contribute significantly to the spacecraft moment of inertia due to their length. There are historical cases where radial booms have been severed or have failed to deploy. This paper presents models for the center of mass (CM) and inertia tensor that account for variable boom geometry and investigates how the CM and inertia tensor change when a radial boom is severed.The CM and inertia tensor models presented here will be included in the Attitude Ground System (AGS) for the Magnetospheric Multiscale (MMS) mission. This work prepares the AGS to provide uninterrupted support in the event of a radial boom anomaly. These models will improve the AGS computations for spin-axis precession prediction, Kalman filter propagation for the definitive attitude, and mass property generation needed for the onboard control system. As an additional application, a method is developed for approximating the location on the boom where the break occurred based on the new models and readily observable attitude parameters

    Detection Strategies for Extreme Mass Ratio Inspirals

    Full text link
    The capture of compact stellar remnants by galactic black holes provides a unique laboratory for exploring the near horizon geometry of the Kerr spacetime, or possible departures from general relativity if the central cores prove not to be black holes. The gravitational radiation produced by these Extreme Mass Ratio Inspirals (EMRIs) encodes a detailed map of the black hole geometry, and the detection and characterization of these signals is a major scientific goal for the LISA mission. The waveforms produced are very complex, and the signals need to be coherently tracked for hundreds to thousands of cycles to produce a detection, making EMRI signals one of the most challenging data analysis problems in all of gravitational wave astronomy. Estimates for the number of templates required to perform an exhaustive grid-based matched-filter search for these signals are astronomically large, and far out of reach of current computational resources. Here I describe an alternative approach that employs a hybrid between Genetic Algorithms and Markov Chain Monte Carlo techniques, along with several time saving techniques for computing the likelihood function. This approach has proven effective at the blind extraction of relatively weak EMRI signals from simulated LISA data sets.Comment: 10 pages, 4 figures, Updated for LISA 8 Symposium Proceeding
    corecore