262 research outputs found

    Abundances of neutron-capture elements in G 24-25. A halo-population CH subgiant

    Full text link
    The differences between the neutron-capture element abundances of halo stars are important to our understanding of the nucleosynthesis of elements heavier than the iron group. We present a detailed abundance analysis of carbon and twelve neutron-capture elements from Sr up to Pb for a peculiar halo star G24-25 with [Fe/H] = -1.4 in order to probe its origin. The equivalent widths of unblended lines are measured from high resolution NOT/FIES spectra and used to derive abundances based on Kurucz model atmospheres. In the case of CH, Pr, Eu, Gd, and Pb lines, the abundances are derived by fitting synthetic profiles to the observed spectra. Abundance analyses are performed both relative to the Sun and to a normal halo star G16-20 that has similar stellar parameters as G24-25. We find that G24-25 is a halo subgiant star with an unseen component. It has large overabundances of carbon and heavy s-process elements and mild overabundances of Eu and light s-process elements. This abundance distribution is consistent with that of a typical CH giant. The abundance pattern can be explained by mass transfer from a former asymptotic giant branch component, which is now a white dwarf.Comment: 11 pages, 9 figures, accepted for publication in A&

    Differential abundance analysis of Procyon and θ Sculptoris: Comparison with abundance patterns of solar‐like pairs

    Full text link
    The precision differential abundance (PDA) technique is applied to the mid‐F stars Procyon and θ Scl using spectra from the ESO UVESPOP library. We relate PDA patterns to endogenous processes related to condensation or to exogenous processes connected to Galactic chemical evolution. We employ one‐dimensional LTE models, but emphasize the use of weaker lines (≤20 mÅ) that are typically used in such studies. We compare our results with PDAs of solar‐type stars. Abundances and PDAs are determined for 28 elements: C, N, O, Na, Mg, Al, Si, S, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Ba, La, Ce, Nd, Sm, Eu, and Gd. A plot of PDAs (θ Scl minus Procyon) versus Z shows a highly significant correlation. Moreover, local substructure of the plot for the elements Ca‐Zn and neutron‐addition elements is similar to that which can be found for solar twins. Our PDA versus Z plot structural shows similarity to plots that can be made from the extensive work of Bedell et al. (2018). That PDA structure and substructure is clearly a function of age.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154353/1/asna202013694.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154353/2/asna202013694_am.pd

    Lifetime measurement of the metastable 3d 2D5/2 state in the 40Ca+ ion using the shelving technique on a few-ion string

    Full text link
    We present a measurement of the lifetime of the metastable 3d 2D5/2 state in the 40Ca+ ion, using the so-called shelving technique on a string of five Doppler laser-cooled ions in a linear Paul trap. A detailed account of the data analysis is given, and systematic effects due to unwanted excitation processes and collisions with background gas atoms are discussed and estimated. From a total of 6805 shelving events, we obtain a lifetime tau=1149+/-14(stat.)+/-4(sys.)ms, a result which is in agreement with the most recent measurements.Comment: 10 pages, 7 figures. Submitted for publicatio

    New Rare Earth Element Abundance Distributions for the Sun and Five r-Process-Rich Very Metal-Poor Stars

    Get PDF
    We have derived new abundances of the rare-earth elements Pr, Dy, Tm, Yb, and Lu for the solar photosphere and for five very metal-poor, neutron-capture r-process-rich giant stars. The photospheric values for all five elements are in good agreement with meteoritic abundances. For the low metallicity sample, these abundances have been combined with new Ce abundances from a companion paper, and reconsideration of a few other elements in individual stars, to produce internally-consistent Ba, rare-earth, and Hf (56<= Z <= 72) element distributions. These have been used in a critical comparison between stellar and solar r-process abundance mixes.Comment: 48 pages, 11 figures, 12 tables: To appear in the Astrophysical Journal Supplemen

    Detection of Elements at All Three r-process Peaks in the Metal-Poor Star HD 160617

    Full text link
    We report the first detection of elements at all three r-process peaks in the metal-poor halo star HD 160617. These elements include arsenic and selenium, which have not been detected previously in halo stars, and the elements tellurium, osmium, iridium, and platinum, which have been detected previously. Absorption lines of these elements are found in archive observations made with the Space Telescope Imaging Spectrograph onboard the Hubble Space Telescope. We present up-to-date absolute atomic transition probabilities and complete line component patterns for these elements. Additional archival spectra of this star from several ground-based instruments allow us to derive abundances or upper limits of 45 elements in HD 160617, including 27 elements produced by neutron-capture reactions. The average abundances of the elements at the three r-process peaks are similar to the predicted solar system r-process residuals when scaled to the abundances in the rare earth element domain. This result for arsenic and selenium may be surprising in light of predictions that the production of the lightest r-process elements generally should be decoupled from the heavier r-process elements.Comment: Published in the Astrophysical Journal (22 pages, 12 figures

    {\it Ab initio} calculations of forbidden transition probabilities and lifetimes of low-lying states in V4+^{4+}

    Full text link
    Electric quadrupole (E2) and magnetic dipole (M1) transition amplitudes among the low-lying states of quadruply ionized vanadium V4+^{4+}, important in various field of experimental and astrophysics are presented very accurately. Most of these results are reported for the first time in the literature. Relativistic coupled-cluster theory with single, double and leading triple excitations has been employed for these calculations. Estimation of different correlation effects arising through the above formalism have been highlighted by studying core and valence electrons excitations to the excited states. The lifetime of the first excited DD- state is found to be long.Comment: 16 pages in pdf outpu

    The temperature and chronology of heavy-element synthesis in low-mass stars

    Full text link
    Roughly half of the heavy elements (atomic mass greater than that of iron) are believed to be synthesized in the late evolutionary stages of stars with masses between 0.8 and 8 solar masses. Deep inside the star, nuclei (mainly iron) capture neutrons and progressively build up (through the slow-neutron-capture process, or s-process) heavier elements that are subsequently brought to the stellar surface by convection. Two neutron sources, activated at distinct temperatures, have been proposed: 13C and 22Ne, each releasing one neutron per alpha-particle (4He) captured. To explain the measured stellar abundances, stellar evolution models invoking the 13C neutron source (which operates at temperatures of about one hundred million kelvin) are favoured. Isotopic ratios in primitive meteorites, however, reflecting nucleosynthesis in the previous generations of stars that contributed material to the Solar System, point to higher temperatures (more than three hundred million kelvin), requiring at least a late activation of 22Ne. Here we report a determination of the s-process temperature directly in evolved low-mass giant stars, using zirconium and niobium abundances, independently of stellar evolution models. The derived temperature supports 13C as the s-process neutron source. The radioactive pair 93Zr-93Nb used to estimate the s-process temperature also provides, together with the pair 99Tc-99Ru, chronometric information on the time elapsed since the start of the s-process, which we determine to be one million to three million years.Comment: 30 pages, 10 figure
    corecore