258 research outputs found

    Optical response of ferromagnetic YTiO_3 studied by spectral ellipsometry

    Get PDF
    We have studied the temperature dependence of spectroscopic ellipsometry spectra of an electrically insulating, nearly stoichiometric YTiO_3 single crystal with ferromagnetic Curie temperature T_C = 30 K. The optical response exhibits a weak but noticeable anisotropy. Using a classical dispersion analysis, we identify three low-energy optical bands at 2.0, 2.9, and 3.7 eV. Although the optical conductivity spectra are only weakly temperature dependent below 300 K, we are able to distinguish high- and low-temperature regimes with a distinct crossover point around 100 K. The low-temperature regime in the optical response coincides with the temperature range in which significant deviations from Curie-Weiss mean field behavior are observed in the magnetization. Using an analysis based on a simple superexchange model, the spectral weight rearrangement can be attributed to intersite d_i^1d_j^1 \longrightarrow d_i^2d_j^0 optical transitions. In particular, Kramers-Kronig consistent changes in optical spectra around 2.9 eV can be associated with the high-spin-state (^3T_1) optical transition. This indicates that other mechanisms, such as weakly dipole-allowed p-d transitions and/or exciton-polaron excitations, can contribute significantly to the optical band at 2 eV. The recorded optical spectral weight gain of 2.9 eV optical band is significantly suppressed and anisotropic, which we associate with complex spin-orbit-lattice phenomena near ferromagnetic ordering temperature in YTiO_3

    L\'evy Distribution of Single Molecule Line Shape Cumulants in Low Temperature Glass

    Full text link
    We investigate the distribution of single molecule line shape cumulants, κ1,κ2,...\kappa_1,\kappa_2,..., in low temperature glasses based on the sudden jump, standard tunneling model. We find that the cumulants are described by L\'evy stable laws, thus generalized central limit theorem is applicable for this problem.Comment: 5 pages, 3 figure

    A Policy Maker’s Guide to Designing Payments for Ecosystem Services

    Get PDF
    Over the past five years, there has been increasing interest around the globe in payment schemes for the provision of ecosystem services, such as water purification, carbon sequestration, flood control, etc. Written for an Asian Development Bank project in China, this report provides a user-friendly guide to designing payments for the provision of ecosystem services. Part I explains the different types of ecosystem services, different ways of assessing their value, and why they are traditionally under-protected by law and policy. This is followed by an analysis of when payments for services are a preferable approach to other policy instruments. Part II explains the design issues underlying payments for services. These include identification of the service as well as potential buyers and sellers, the level of service needed, payment timing, payment type, and risk allocation. Part II contains a detailed analysis of the different types of payment mechanisms, ranging from general subsidy and certification to mitigation and offset payments. Part III explores the challenges to designing a payment scheme. These include the ability to monitor service provision, secure property rights, perverse incentives, supporting institutions, and poverty alleviation

    Structure and oxidation kinetics of the Si(100)-SiO2 interface

    Full text link
    We present first-principles calculations of the structural and electronic properties of Si(001)-SiO2 interfaces. We first arrive at reasonable structures for the c-Si/a-SiO2 interface via a Monte-Carlo simulated annealing applied to an empirical interatomic potential, and then relax these structures using first-principles calculations within the framework of density-functional theory. We find a transition region at the interface, having a thickness on the order of 20\AA, in which there is some oxygen deficiency and a corresponding presence of sub-oxide Si species (mostly Si^+2 and Si^+3). Distributions of bond lengths and bond angles, and the nature of the electronic states at the interface, are investigated and discussed. The behavior of atomic oxygen in a-SiO2 is also investigated. The peroxyl linkage configuration is found to be lower in energy than interstitial or threefold configurations. Based on these results, we suggest a possible mechanism for oxygen diffusion in a-SiO2 that may be relevant to the oxidation process.Comment: 7 pages, two-column style with 6 postscript figures embedded. Uses REVTEX and epsf macros. Also available at http://www.physics.rutgers.edu/~dhv/preprints/index.html#ng_sio

    Lattice Relaxation and Charge-Transfer Optical Transitions Due to Self-Trapped Holes in Non-Stoichiometric LaMnO3_3 Crystal

    Full text link
    We use the Mott-Littleton approach to evaluate polarisation energies in LaMnO3_3 lattice associated with holes localized on both Mn3+^{3+} cation and O2^{2-} anion. The full (electronic and ionic) lattice relaxation energy for a hole localized at the O-site is estimated as 2.4 eV which is appreciably greater than that of 0.8 eV for a hole localized at the Mn-site, indicating on the strong electron-phonon interaction in the former case. Using a Born-Haber cycle we examine thermal and optical energies of the hole formation associated with electron ionization from Mn3+^{3+}, O2^{2-} and La3+^{3+} ions in LaMnO3_3 lattice. For these calculations we derive a phenomenological value for the second electron affinity of oxygen in LaMnO3_3 lattice by matching the optical energies of La4+^{4+} and O^- hole formation with maxima of binding energies in the experimental photoemission spectra. The calculated thermal energies predict that the electronic hole is marginally more stable in the Mn4+^{4+} state in LaMnO3_3 host lattice, but the energy of a hole in the O^- state is only higher by a small amount, 0.75 eV, rather suggesting that both possibilities should be treated seriously. We examine the energies of a number of fundamental optical transitions, as well as those involving self-trapped holes of Mn4+^{4+} and O^- in LaMnO3_3 lattice. The reasonable agreement with experiment of our predicted energies, linewidths and oscillator strengths leads us to plausible assignments of the optical bands observed. We deduce that the optical band near 5 eV is associated with O(2p) - Mn(3d) transition of charge-transfer character, whereas the band near 2.3 eV is rather associated with the presence of Mn4+^{4+} and/or O^- self-trapped holes in non-stoichiometric LaMnO3_3 compound.Comment: 18 pages, 6 figures, it was presented partially at SCES-2001 conference in Ann Arbor, Michiga

    Single electron magneto-conductivity of a nondegenerate 2D electron system in a quantizing magnetic field

    Full text link
    We study transport properties of a non-degenerate two-dimensional system of non-interacting electrons in the presence of a quantizing magnetic field and a short-range disorder potential. We show that the low-frequency magnetoconductivity displays a strongly asymmetric peak at a nonzero frequency. The shape of the peak is restored from the calculated 14 spectral moments, the asymptotic form of its high-frequency tail, and the scaling behavior of the conductivity for omega -> 0. We also calculate 10 spectral moments of the cyclotron resonance absorption peak and restore the corresponding (non-singular) frequency dependence using the continuous fraction expansion. Both expansions converge rapidly with increasing number of included moments, and give numerically accurate results throughout the region of interest. We discuss the possibility of experimental observation of the predicted effects for electrons on helium.Comment: RevTeX 3.0, 14 pages, 8 eps figures included with eps

    C-axis lattice dynamics in Bi-based cuprate superconductors

    Full text link
    We present results of a systematic study of the c axis lattice dynamics in single layer Bi2Sr2CuO6 (Bi2201), bilayer Bi2Sr2CaCu2O8 (Bi2212) and trilayer Bi2Sr2Ca2Cu3O10 (Bi2223) cuprate superconductors. Our study is based on both experimental data obtained by spectral ellipsometry on single crystals and theoretical calculations. The calculations are carried out within the framework of a classical shell model, which includes long-range Coulomb interactions and short-range interactions of the Buckingham form in a system of polarizable ions. Using the same set of the shell model parameters for Bi2201, Bi2212 and Bi2223, we calculate the frequencies of the Brillouin-zone center phonon modes of A2u symmetry and suggest the phonon mode eigenvector patterns. We achieve good agreement between the calculated A2u eigenfrequencies and the experimental values of the c axis TO phonon frequencies which allows us to make a reliable phonon mode assignment for all three Bi-based cuprate superconductors. We also present the results of our shell model calculations for the Gamma-point A1g symmetry modes in Bi2201, Bi2212 and Bi2223 and suggest an assignment that is based on the published experimental Raman spectra. The superconductivity-induced phonon anomalies recently observed in the c axis infrared and resonant Raman scattering spectra in trilayer Bi2223 are consistently explained with the suggested assignment.Comment: 29 pages, 13 figure

    Properties of nitrogen-vacancy centers in diamond: group theoretic approach

    Get PDF
    We present a procedure that makes use of group theory to analyze and predict the main properties of the negatively charged nitrogen-vacancy (NV) center in diamond. We focus on the relatively low temperatures limit where both the spin-spin and spin-orbit effects are important to consider. We demonstrate that group theory may be used to clarify several aspects of the NV structure, such as ordering of the singlets in the (e2e^2) electronic configuration, the spin-spin and the spin-orbit interactions in the (aeae) electronic configuration. We also discuss how the optical selection rules and the response of the center to electric field can be used for spin-photon entanglement schemes. Our general formalism is applicable to a broad class of local defects in solids. The present results have important implications for applications in quantum information science and nanomagnetometry.Comment: 30 pages, 6 figure

    Spin-Atomic Vibration Interaction and Spin-Flip Hamiltonian of a Single Atomic Spin in a Crystal Field

    Full text link
    We derive the spin-atomic vibration interaction VSAV_{\rm SA} and the spin-flip Hamiltonian VSFV_{\rm SF} of a single atomic spin in a crystal field. We here apply the perturbation theory to a model with the spin-orbit interaction and the kinetic and potential energies of electrons. The model also takes into account the difference in vibration displacement between an effective nucleus and electrons, \Delta {{\boldmath r}}. Examining the coefficients of VSAV_{\rm SA} and VSFV_{\rm SF}, we first show that VSAV_{\rm SA} appears for \Delta {{\boldmath r}}\ne0, while VSFV_{\rm SF} is present independently of \Delta {{\boldmath r}}. As an application, we next obtain VSAV_{\rm SA} and VSFV_{\rm SF} of an Fe ion in a crystal field of tetragonal symmetry. It is found that the magnitudes of the coefficients of VSAV_{\rm SA} can be larger than those of the conventional spin-phonon interaction depending on vibration frequency. In addition, transition probabilities per unit time due to VSAV_{\rm SA} and VSFV_{\rm SF} are investigated for the Fe ion with an anisotropy energy of DSZ2-|D|S_Z^2, where DD is an anisotropy constant and SZS_Z is the ZZ component of a spin operator.Comment: 55 pages, 17 figures, to be published in J. Phys. Soc. Jpn. 79 (2010) No. 11, typos correcte
    corecore