14,948 research outputs found
Putative spin liquid in the triangle-based iridate BaIrTiO
We report on thermodynamic, magnetization, and muon spin relaxation
measurements of the strong spin-orbit coupled iridate BaIrTiO,
which constitutes a new frustration motif made up a mixture of edge- and
corner-sharing triangles. In spite of strong antiferromagnetic exchange
interaction of the order of 100~K, we find no hint for long-range magnetic
order down to 23 mK. The magnetic specific heat data unveil the -linear and
-squared dependences at low temperatures below 1~K. At the respective
temperatures, the zero-field muon spin relaxation features a persistent spin
dynamics, indicative of unconventional low-energy excitations. A comparison to
the isostructural compound BaRuTiO suggests that a concerted
interplay of compass-like magnetic interactions and frustrated geometry
promotes a dynamically fluctuating state in a triangle-based iridate.Comment: Physical Review B accepte
Magnetic charge, angular momentum and negative cosmological constant
We argue that there are no axially symmetric rotating monopole solutions for
a Yang-Mills-Higgs theory in flat spacetime background. We construct axially
symmetric Yang-Mills-Higgs solutions in the presence of a negative cosmological
constant, carrying magnetic charge and a nonvanishing electric charge.
However, these solution are also nonrotating.Comment: 17 pages, LaTeX, 7 figure
Effects of pressure on the ferromagnetic state of the CDW compound SmNiC2
We report the pressure response of charge-density-wave (CDW) and
ferromagnetic (FM) phases of the rare-earth intermetallic SmNiC2 up to 5.5 GPa.
The CDW transition temperature (T_{CDW}), which is reflected as a sharp
inflection in the electrical resistivity, is almost independent of pressure up
to 2.18 GPa but is strongly enhanced at higher pressures, increasing from 155.7
K at 2.2 GPa to 279.3 K at 5.5 GPa. Commensurate with the sharp increase in
T_{CDW}, the first-order FM phase transition, which decreases with applied
pressure, bifurcates into the upper (T_{M1}) and lower (T_c) phase transitions
and the lower transition changes its nature to second order above 2.18 GPa.
Enhancement both in the residual resistivity and the Fermi-liquid T^2
coefficient A near 3.8 GPa suggests abundant magnetic quantum fluctuations that
arise from the possible presence of a FM quantum critical point.Comment: 5 pages, 5 figure
Hamiltonian analysis of Poincar\'e gauge theory scalar modes
The Hamiltonian constraint formalism is used to obtain the first explicit
complete analysis of non-trivial viable dynamic modes for the Poincar\'e gauge
theory of gravity. Two modes with propagating spin-zero torsion are analyzed.
The explicit form of the Hamiltonian is presented. All constraints are obtained
and classified. The Lagrange multipliers are derived. It is shown that a
massive spin- mode has normal dynamical propagation but the associated
massless is pure gauge. The spin- mode investigated here is also
viable in general. Both modes exhibit a simple type of ``constraint
bifurcation'' for certain special field/parameter values.Comment: 28 pages, LaTex, submitted to International Journal of Modern Physics
Exchange anisotropy and the dynamic phase transition in thin ferromagnetic Heisenberg films
Monte Carlo simulations have been performed to investigate the dependence of
the dynamic phase behavior on the bilinear exchange anisotropy of a classical
Heisenberg spin system. The system under consideration is a planar thin
ferromagnetic film with competing surface fields subject to a pulsed
oscillatory external field. The results show that the films exhibit a single
discontinuous dynamic phase transition (DPT) as a function of the anisotropy of
the bilinear exchange interaction in the Hamiltonian. Furthermore there is no
evidence of stochastic resonance (SR) associated with the DPT. These results
are in marked contrast to the continuous DPT observed in the same system as a
function of temperature and applied field strength for a fixed bilinear
exchange anisotropy.Comment: 11 pages including 3 figure pages; submitted to PR
Mechanistic target of rapamycin complex 1 signaling links hypoxia to increased igfbp-1 phosphorylation in primary human decidualized endometrial stromal cells
Insulin-like growth factor-1 (IGF-1) bioavailability in pregnancy is governed by IGF binding protein (IGFBP-1) and its phosphorylation, which enhances the affinity of IGFBP-1 for the growth factor. The decidua is the predominant source of maternal IGFBP-1; however, the mechanisms regulating decidual IGFBP-1 secretion/phosphorylation are poorly understood. Using decidualized primary human endometrial stromal cells (HESCs) from first-trimester placenta, we tested the hypothesis that mTORC1 signaling mechanistically links hypoxia to decidual IGFBP-1 secretion/phosphorylation. Hypoxia inhibited mechanistic target of rapamycin (mTORC1) (p-P70-S6K/Thr389, −47%, p = 0.038; p-4E-BP1/Thr70, −55%, p = 0.012) and increased IGFBP-1 (total, +35%, p = 0.005; phosphorylated, Ser101/+82%, p = 0.018; Ser119/+88%, p = 0.039; Ser 169/+157%, p = 0.019). Targeted parallel reaction monitoring-mass spectrometry (PRM-MS) additionally demonstrated markedly increased dual IGFBP-1 phosphorylation (pSer98+Ser101; pSer169+Ser174) in hypoxia. IGFBP-1 hyperphosphorylation inhibited IGF-1 receptor autophosphorylation/ Tyr1135 (−29%, p = 0.002). Furthermore, silencing of tuberous sclerosis complex 2 (TSC2) activated mTORC1 (p-P70-S6K/Thr389, +68%, p = 0.038; p-4E-BP1/Thr70, +30%, p = 0.002) and reduced total/site-specific IGFBP-1 phosphorylation. Importantly, TSC2 siRNA prevented inhibition of mTORC1 and the increase in secretion/site-specific IGFBP-1 phosphorylation in hypoxia. PRM-MS indicated concomitant changes in protein kinase autophosphorylation (CK2/Tyr182; PKC/Thr497; PKC/Ser657). Overall, mTORC1 signaling mechanistically links hypoxia to IGFBP-1 secretion/phosphorylation in primary HESC, implicating decidual mTORC1 inhibition as a novel mechanism linking uteroplacental hypoxia to fetal growth restriction
- …