
                          Perry, B. I., Upthegrove, R., Crawford, O., Jang, S., Lau, E., McGill, I.,
Carver, E., Jones, P. B., & Khandaker, G. M. (2020). Cardiometabolic
risk prediction algorithms for young people with psychosis: a
systematic review and exploratory analysis. Acta Psychiatrica
Scandinavica, 142(3), 215-232. https://doi.org/10.1111/acps.13212

Publisher's PDF, also known as Version of record
License (if available):
CC BY
Link to published version (if available):
10.1111/acps.13212

Link to publication record in Explore Bristol Research
PDF-document

This is the final published version of the article (version of record). It first appeared online via
John Wiley and Sons at https://doi.org/10.1111/acps.13212 . Please refer to any applicable terms of use of the
publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the
published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/386557777?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1111/acps.13212
https://doi.org/10.1111/acps.13212
https://research-information.bris.ac.uk/en/publications/702fe07e-429c-4b92-a65d-2255f2f894f3
https://research-information.bris.ac.uk/en/publications/702fe07e-429c-4b92-a65d-2255f2f894f3


Systematic Review or Meta-Analysis

Cardiometabolic risk prediction algorithms
for young people with psychosis: a
systematic review and exploratory analysis

Perry BI, Upthegrove R, Crawford O, Jang S, Lau E, McGill I, Carver
E, Jones PB, Khandaker GM. Cardiometabolic risk prediction
algorithms for young people with psychosis: a systematic review and
exploratory analysis.

Objective: Cardiometabolic risk prediction algorithms are common in
clinical practice. Young people with psychosis are at high risk for
developing cardiometabolic disorders. We aimed to examine whether
existing cardiometabolic risk prediction algorithms are suitable for
young people with psychosis.
Methods: We conducted a systematic review and narrative synthesis of
studies reporting the development and validation of cardiometabolic
risk prediction algorithms for general or psychiatric populations.
Furthermore, we used data from 505 participants with or at risk of
psychosis at age 18 years in the ALSPAC birth cohort, to explore the
performance of three algorithms (QDiabetes, QRISK3 and
PRIMROSE) highlighted as potentially suitable. We repeated analyses
after artificially increasing participant age to the mean age of the
original algorithm studies to examine the impact of age on predictive
performance.
Results: We screened 7820 results, including 110 studies. All algorithms
were developed in relatively older participants, and most were at high
risk of bias. Three studies (QDiabetes, QRISK3 and PRIMROSE)
featured psychiatric predictors. Age was more strongly weighted than
other risk factors in each algorithm. In our exploratory analysis,
calibration plots for all three algorithms implied a consistent systematic
underprediction of cardiometabolic risk in the younger sample. After
increasing participant age, calibration plots were markedly improved.
Conclusion: Existing cardiometabolic risk prediction algorithms cannot
be recommended for young people with or at risk of psychosis. Existing
algorithms may underpredict risk in young people, even in the face of
other high-risk features. Recalibration of existing algorithms or a new
tailored algorithm for the population is required.
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Summations

• A large number of cardiometabolic risk prediction algorithms have been developed, but only three
algorithms (QRISK3, QDiabetes and PRIMROSE) included psychiatric predictors. All three algo-
rithms were developed and validated in large samples of relatively older participants.

• From our exploratory analysis, we show that all three algorithms may underpredict cardiometabolic
risk in young adults with or at risk of developing psychosis, which may be a function of the way age
is modelled in the algorithms.

• No existing cardiometabolic risk prediction algorithm can be recommended for use in young adults
with or at risk of developing psychosis, yet the population remains at higher risk of cardiometabolic
disorders than their age-matched peers.

215

Acta Psychiatr Scand 2020: 142: 215–232 © 2020 The Authors. Acta Psychiatrica Scandinavica published by John Wiley & Sons Ltd
All rights reserved
DOI: 10.1111/acps.13212

ACTA PSYCHIATRICA SCANDINAVICA

https://orcid.org/0000-0002-1533-026X
https://orcid.org/0000-0002-1533-026X
https://orcid.org/0000-0002-1533-026X
http://creativecommons.org/licenses/by/4.0/
mailto:
http://crossmark.crossref.org/dialog/?doi=10.1111%2Facps.13212&domain=pdf&date_stamp=2020-07-29


Limitations

• Due to study heterogeneity, we were unable to follow a meta-analytic approach to the synthesis of
systematic review results.

• Our exploratory analysis of QRISK3, QDiabetes and PRIMROSE was limited by relatively small
sample size and a related but distinct outcome definition to the original algorithms.

Introduction

Cardiometabolic disorders broadly include cardio-
vascular diseases (CVD), disorders of adiposity
such as obesity and disorders of glucose-insulin
homeostasis such as type 2 diabetes mellitus
(T2DM) (1). They impose a huge societal burden
costing an estimated £30 billion and accounting
for over 190 000 deaths each year in the UK alone
(2). A particularly high-risk group for the develop-
ment of cardiometabolic disorders are people with
psychotic disorders such as schizophrenia, who
make up around 0.8% of the population (3) and
have up to a 30% increased incidence of car-
diometabolic disorders than the general population
(4). Indeed, increased physical comorbidity is a
leading cause for significantly increased mortality
rates and reduced life expectancy for people with
schizophrenia compared with the general popula-
tion (5–7). We therefore need clinical tools to pre-
dict cardiometabolic risk in this group in order to
optimize care and improve long-term outcomes.
Yet, a recent report of a small sample of people
with chronic schizophrenia suggests that some
commonly used cardiometabolic risk prediction
algorithms return differing risk prediction scores
when tested on the same participants. This calls
into question the reliability and suitability of such
algorithms for relatively older people with chronic
schizophrenia, let alone young people with or at
risk of psychosis (8).

Recent evidence suggests that the physical comor-
bidity associated with schizophrenia starts early.
Markers of developing cardiometabolic disorders are
a feature that distinguish cases of first-episode psy-
chosis from matched general population controls (9,
10) and are associated with young adults at risk of
developing psychosis (11). The field of early interven-
tion in psychosis rests on a premise that intervening
early could improve longer-term outcomes, and this
premise applies equally to the treatment of car-
diometabolic disorders. Therefore, cardiometabolic
risk prediction algorithms may be a useful tool for
healthcare professionals to help tailor treatment
plans for young people with psychosis that could
help to reduce both long-term physical and

psychiatric morbidity. However, such a tool could
only be clinically useful if the predictions it makes
are accurate. It is unclear as to whether this may or
may not be the case.

Aims of the study

We conducted a systematic review to identify and
compare existing cardiometabolic risk prediction
algorithms developed for the general or psychiatric
populations and consider their suitability for
young people with psychosis. Next, we performed
an exploratory analysis using data from a large
UK birth cohort to examine the predictive ability
of any algorithms highlighted as potentially suit-
able by the review, in a sample of young adults
with or at risk of psychosis. To explore the impact
of age on risk estimates, we reassessed model per-
formance after artificially increasing the age of par-
ticipants to the mean age of the original algorithm
development study, leaving all other predictors
unchanged.

Method

Systematic review

Literature search. We conducted a systematic liter-
ature search of EMBASE (1947-present), Ovid
MEDLINE (1946-present), PsychINFO (1806-pre-
sent), Web of Science (from inception) and the first
twenty pages of Google Scholar (12) to 1 Decem-
ber 2019. We also searched the references of
included studies. Our search strategy is presented
below. MeSH headings (denoted with *) and text
terms were used:

Group 1: metabolism* (OR) metabolic* (OR)
diabetes mellitus* (OR) cardiovascular diseases*
(OR) obesity* (OR) cardiometabolic

(AND)
Group 2: risk assessment* (OR) risk* (OR) out-

come assessment* (OR) patient outcome assess-
ment* (OR) prognosis*

(AND)
Group 3: calculator (OR) computers* (OR)

algorithms* (OR) software* (OR) tool.
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We applied the PRISMA (Preferred Reporting
Items for Systematic reviews and Meta-analyses)
guidelines (13). The systematic review was regis-
tered on PROSPERO (CRD42019150377).

Study selection. The inclusion criteria were as fol-
lows: (i) studies reporting the development and/or
validation of cardiometabolic risk algorithms
designed for either the general or psychiatric popu-
lations; (ii) studies which reported in combination
the development and validation (internal or exter-
nal) of an original algorithm; reported the develop-
ment but not validation of an algorithm; reported
the first validation of a previously developed but
not validated algorithm; or reported a new recali-
bration of a previously developed algorithm; (iii)
cardiometabolic risk was defined as CVD (stroke,
myocardial infarction, hypertension, unstable ang-
ina) and its common predeterminants including
T2DM, prediabetes, obesity or dyslipidaemia; (iv)
studies reported in any language; (v) published and
unpublished research, conference proceedings and
academic theses. The exclusion criteria were as fol-
lows: (i) algorithms designed specifically for other
defined health groups (i.e. postoperative patients
or patients with any physical health diagnoses at
baseline) and (ii) studies reporting validation with-
out recalibration of previously validated algo-
rithms.

Titles and abstracts were screened independently
by four authors (BIP, EL, IM and EC) prior to
full-text screening. Any discrepancies were
resolved in consultation with a senior author
(GMK). Data were extracted by three authors
(BIP, OC and SJ) from studies that met the inclu-
sion criteria. Searches were re-run immediately
prior to the final analyses, and further studies
retrieved for inclusion using the processes outlined
above.

Data extraction and synthesis. We extracted data
on general characteristics (e.g. population, loca-
tion, study type, type of risk predicted), the charac-
teristics of included participants (e.g. age, sex,
ethnicity) and characteristics of the developed/vali-
dated algorithms (e.g. included predictors, algo-
rithm performance). Risk of bias was assessed
using the ‘Prediction model Risk Of Bias Assess-
ment Tool’ (PROBAST) (14), which aims to iden-
tify shortcomings in study design, conduct or
analysis that could lead to systematically distorted
estimates of model predictive performance. PRO-
BAST includes four domains for potential sources
of bias in prediction model studies (participants,
predictors, outcome and analysis) which are then
summarized by an overall judgement, either low

risk, high risk or unclear risk of bias (14). We plot-
ted the range and frequency of predictors included
in studies. We illustrated the relative weighting of
different predictors in one included study which
featured psychiatric predictors. Algorithm perfor-
mance was compared using statistics relating to
model discrimination (how well an algorithm dis-
criminates people at higher risk from people at
lower risk, e.g. Harrell’s C Statistic, where a score
of 1.0 indicates perfect discrimination, and a score
of 0.5 indicates the model is no better than chance)
and model calibration (the accuracy of absolute
risk estimates, e.g. calibration plots) (15). We also
examined the events-per-variable ratio (EPV) (the
ratio of outcome events: predictors considered in
algorithm development) of each study to assess the
potential risk of model overfitting (16). An EPV of
10 or more had previously been considered satis-
factory (17), though higher ratios have more
recently been advised (18). Where an EPV ratio
was not reported, we calculated it where possible
from the information available in the study.
Finally, we considered the likely suitability of all
included algorithms for young people with psy-
chosis. We summarized and compared studies with
a narrative synthesis (19).

Exploratory analysis

Data source. The Avon Longitudinal Study of
Parents And Children (ALSPAC) birth cohort ini-
tially recruited 14 541 pregnant women resident in
a geographically defined region in southwest of
England, with expected dates of delivery 1 April
1991 to 31 December 1992, resulting in 14 062 live
births (20–22). Following further periods of
recruitment over time, 913 additional participants
were recruited. See http://www.bris.ac.uk/alspac/
researchers/data-access/data-dictionary/ for a fully
searchable data dictionary. Study data were col-
lected and managed using REDCap electronic data
capture tools hosted at University of Bristol
(23,24). Ethical approval for the study was
obtained from the ALSPAC Ethics and Law Com-
mittee and Local Research Ethics Committees. All
participants provided informed consent.

Study sample. We included participants who at
age 18 or 24 years were identified as experiencing
definite psychotic symptoms or psychotic disorder.
In ALSPAC, psychotic symptoms were identified
through the face-to-face, semi-structured Psy-
chosis-Like Symptom Interview (PLIKS) con-
ducted by trained psychology graduates and coded
according to the definitions in the Schedules for
Clinical Assessment in Neuropsychiatry, version
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2.0. See Supplementary Data for further informa-
tion. We excluded participants who already met
the outcome criteria at age 18 years and partici-
pants who had missing data on all included vari-
ables. Additionally, we conducted a post hoc
sensitivity analysis to examine the potential impact
of sample size; we performed the analysis again
including all participants from the total ALSPAC
sample at age 18 years who did not meet the crite-
ria for the outcome at age 18 years and who did
not have missing data on all included variables.
See Figures S1–S2 for flow charts of included par-
ticipants.

Outcome. We used the harmonized definition (25)
of the metabolic syndrome measured at age 24y as
the outcome, in which it is an established precursor
of T2DM (26) and CVD (27). Metabolic syndrome
is a more appropriate outcome for a sample of rel-
atively young participants. The follow-up period
was six years. The binary outcome was coded pre-
sent for participants meeting ≥3 factors from the
following: ethnicity-specific waist circumference
(≥94 cm in males and ≥80 cm in females for Cau-
casians; ≥90 cm in males and ≥80 cm in females
for other ethnic groups (25)); elevated triglycerides
(≥1.7 mmol/L); reduced high-density lipoprotein
(HDL (<1.0 mmol/L in males and <1.3 mmol/L in
females); elevated seated blood pressure (sys-
tolic ≥ 130 mmHg); and elevated fasting plasma
glucose (FPG) (≥5.7 mmol/L). See Supplementary
Methods for further detail on biochemical mea-
surements.

Predictors. We included all available predictors
from QRISK3, QDiabetes and PRIMROSE,
which were the three algorithms highlighted as
being potentially the most suitable for young peo-
ple with psychosis. These included age, Townsend
deprivation score, body mass index (BMI), ethnic-
ity, smoking, antipsychotic medication use, antide-
pressant use, corticosteroid use, psychosis,
depression, family history of cardiovascular dis-
ease or type 2 diabetes, hypertension, FPG, choles-
terol:HDL ratio, systolic blood pressure, total
cholesterol, HDL, alcohol intake and year of
assessment. For a full list of predictors for each
algorithm and details on how they were measured,
see Table S1 and Methods S1.

Statistical analysis. Estimated six-year risk esti-
mates for metabolic syndrome were calculated for
QDiabetes (28), QRISK3 (29) and PRIMROSE
(30), by applying the published fully specified algo-
rithms to our sample. QDiabetes and PRIMROSE
comprise different models depending on the

availability of blood test results; thus, we used the
model which performed best in the original model
development studies (28, 30). For QDiabetes, the
best performing model included FPG; for PRIM-
ROSE, the best performing model included lipids.
QDiabetes and QRISK3 estimate risk separately
for males and females. We used multiple imputa-
tion using chained equations (31) to address the
impact of missing predictor data. See Methods S1
for further details. Algorithm performance was
assessed using measures of discrimination (Har-
rell’s C statistic and R2) and a measure of calibra-
tion (calibration plots). Calibration plots included
grouped observations, which were split at each 0.2
of predicted risk. First, we calculated model per-
formance using actual participant age (18 years).
To assess the impact of age on model performance,
we artificially substituted every participants’ age in
ALSPAC to the mean age from the original algo-
rithm development study (QDiabetes = 44.9 years;
QRISK3 = 42.9 years; and
PRIMROSE = 49.5 years), leaving all other pre-
dictors unchanged. We re-ran each algorithm and
compared the model performance statistics
described above. Statistical analysis was carried
out in R version 3.6.0 (32).

Results

Systematic review

Study selection and quality assessment. The litera-
ture search returned 7744 results after removing
duplicates. We reviewed 362 full texts, of which
110 studies met inclusion criteria (28-30, 33-138).
See Fig. 1 for the PRISMA diagram. Three studies
were not contained within peer-reviewed journals
and were published either as conference proceed-
ings (108), a thesis (93) or a preprint (106). Report-
ing quality was relatively poor across the majority
of studies, with 108 studies (98%) either at unclear
or high risk of bias following assessment with the
PROBAST tool (14). See Table S2.

Study characteristics. Table S3 reports the charac-
teristics of included studies. All studies were con-
ducted on general population samples of healthy
adults, except one which was conducted on
patients with severe mental illness, defined as either
schizophrenia, other psychotic disorder or bipolar
disorder (30). The majority of included studies
were conducted in high-income or upper-middle-
income countries, with the UK, USA and China
best represented. Eleven studies were conducted in
lower- or middle-income countries. Sample sizes
were highly variable in both development (n = 100

218

Perry et al.



participants (120) to n = 8 136 705 participants
(28)) and validation cohorts (n = 90 participants
(104) to n = 2 671 298 participants (29)). Sixty-
one studies (55%) assessed the risk of fatal or non-
fatal CVD; 31 studies (28%) assessed the risk of
T2DM; five studies (5%) assessed the risk of either
prediabetes or T2DM; three studies (3%) assessed
the risk of metabolic syndrome or obesity; and
three studies (3%) assessed the risk of stroke or
transient ischaemic attack.

Lengths of predicted risks ranged from one
(119) to 30 (80, 123) years. The most common risk
prediction timeframes were either ten-year risk (38
studies, 35%) or five-year risk (14 studies, 13%).
Thirty-nine studies (35%) performed external vali-
dation of an original algorithm. Forty studies
(36%) performed internal validation, either by
subsetting the initial cohort or by bootstrap

methods. All algorithms were designed using either
Cox proportional hazards or logistic regression
analysis. Most studies selected variables for inclu-
sion from previous research or clinical importance
(50 studies, 45%), or using statistical methods, that
is forward or backward selection (31 studies,
28%). Seventeen studies (15%) used simple uni-
variable analysis of each considered predictor,
which is least preferable since it cannot assess
interactions between two or more variables. Eleven
studies (10%) used machine learning techniques.

Participant characteristics. All studies were con-
ducted in adults. The mean age of participants
based on the 76 studies that reported mean age
was 50.50 years (SD 9.31). No studies included a
mean age of participants below 35 years. Eighty-
nine studies (81%) reported the sex distribution of
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Fig. 1. PRISMA diagram. [Colour figure can be viewed at wileyonlinelibrary.com]
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the derivation cohort (mean 55.29% male (SD
17.27)), and 42 studies (38%) reported for the vali-
dation cohort (mean 52.25% male (SD 14.44)).
The majority of studies included roughly equal sex
distribution, apart from nine studies which
included only (121, 127) or mostly females (82, 83,
85, 98, 120, 122, 128) and 12 studies which
included only (41, 71, 94, 102,103,112,119,132,136)
or mostly males (69,80,81). Thirty-three studies
(30%) reported the ethnic makeup of their sample,
where samples ranged from being ethnically com-
pletely homogenous in 18 studies (16%) to rela-
tively heterogeneous, with less than 66% of
participants falling into the most common ethnic
group (63,72,84,125). See Table S3.

Algorithm characteristics. Predictors included in
existing algorithms. Figure 2 shows the frequency
of different predictors included in studies. The
most common predictors were age (98 studies,
89%), smoking (83 studies, 75%) and systolic
blood pressure (55 studies, 50%). Inflammatory
markers such as CRP or IL-6 were included as pre-
dictors in 15 studies (14%). The number of predic-
tors considered for each algorithm varied between

four (44, 52, 53, 79) and 473 predictors (86). EPV
varied between 2.1 (55) and 5,075.4 (29). Twenty
studies featured EPV ratios that were likely < 10.
See Table S4.

Performance of existing algorithms. Discrimination
statistics were presented in 93 studies (85%), and
calibration statistics were presented in 62 studies
(56%). From the 80 studies that included both
model development and validation analysis, 35
(44%) reported performance statistics from both
development and validation cohorts, 27 (34%)
reported only validation cohort statistics, and ten
(13%) reported development only statistics. Most
commonly overall, studies reported both discrimi-
nation and calibration statistics (35 studies, 32%).
Next most commonly, studies reported measures
for discrimination, calibration and sensitivity/
specificity (23 studies, 21%). Eleven studies (10%)
reported no model performance statistics. Discrim-
ination was mostly assessed with area under the
curve (AUC/Harrell’s C statistics). AUC ranged
between 0.61 (100) and 0.97 (120) though notably
the latter was at risk of model overfit, with a sam-
ple size of n = 100 and an EPV ratio of 3.1. The

Fig. 2. Range and frequency of different predictors used in current algorithms. ALT, Alanine Aminotransferase; ApoA/ApoB,
Apolipoprotein A/B Levels; Atyp Antipsych, Prescribed Antipsychotic Medication; BP Meds, Prescribed Antihypertensive Medica-
tion; Chol:HDL, Cholesterol:HDL Ratio; Chron Dis, Personal History of Chronic Disease; CVD Event, Personal History of Car-
diovascular Diseases; DBP, Diastolic Blood Pressure; ECG, Electrocardiogram Findings; eGFR, Glomerular Filtration Rate;
ETOH, Alcohol Use; FHx CVD, Family History Cardiovascular Diseases; FHx T2DM, Family history of Type 2 Diabetes Mellitus;
FPG, Fasting Plasma Glucose; Genetic, Genotype Data; Gest DM, Gestational Diabetes Mellitus; HbA1C, Glycated Haemoglobin;
HDL, High-Density Lipoprotein; HR, Heart Rate; HTN, Diagnosis of Hypertension; IFG, Impaired Fasting Glucose; LDL, Low-
Density Lipoprotein; Phys Act, Physical Activity; RA, Rheumatoid Arthritis; Renal Dis, Renal Disorders; SMI, Diagnosis of Seri-
ous Mental Illness; SysBP, Systolic Blood Pressure; T1DM, Type 1 Diabetes Mellitus; T2DM, Type 2 Diabetes Mellitus; Tot Chol,
Total Cholesterol; Tri, Triglycerides; WC, Waist Circumference; WCC, White Cell Count; WHR, Waist:Hip Ratio. *not counted as
a predictor in studies that developed sex-specific algorithms. [Colour figure can be viewed at wileyonlinelibrary.com]
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mean AUC across all included studies was 0.77,
with 54 studies (49%) scoring above 0.75, sugges-
tive of ‘good’ discrimination. The majority of stud-
ies that reported calibration statistics used the
Hosmer–Lemeshow goodness-of-fit chi-squared
test. Seventeen studies (15%) used the preferred
(139) method of calibration plots. See Table S5.

Potential applicability of existing cardiometabolic risk
algorithms for young people with psychosis. Psychi-
atric illness and treatment were taken into account
in three studies (28–30) predicting risk of CVD (29,
30) or T2DM (28). Two of these studies (QRISK3
and QDiabetes (28, 29)) were conducted on large
general population samples, and one (PRIM-
ROSE) was conducted in people with severe men-
tal illness (30). QRISK3 and QDiabetes (28, 29)
included diagnosis of severe mental illness as a sin-
gle predictor, whereas PRIMROSE included sepa-
rate predictors for bipolar disorder and psychosis
(30). QRISK3 and QDiabetes included the pres-
ence of any atypical antipsychotic as a predictor
(28, 29); PRIMOSE included first- or second-gen-
eration antipsychotics as separate predictors, along
with antidepressants as another predictor (30). All
three studies were conducted on middle-aged
adults (mean ages QDiabetes: 42.9 years (28),
QRISK3: 44.9 years (29), PRIMROSE: 49.5 years
(30)). In PRIMROSE, age was applied as a non-
linear term with a log transformation and was
weighted heavily in comparison to other risk fac-
tors. See Figure S3. In both QRISK3 and QDia-
betes, age was applied as a fractional polynomial,
also implying a non-linear impact on risk.
QRISK3 and QDiabetes both included a number
of interactions between age and other predictors,
further amplifying the relative importance of age
in the algorithms.

QRISK3, QDiabetes and PRIMROSE were
taken forward for the exploratory analysis, on the
basis of the following: large samples used in devel-
opment and validation; strong performance statis-
tics; low risk of bias in three domains; and
inclusion of psychiatric predictors/development in
a psychiatric sample.

Exploratory analysis

Baseline characteristics. The six-year observed risk
of metabolic syndrome at age 24 years in our sam-
ple of participants with or at risk of psychosis was
14.21% in females and 11.88% in males. In our
sensitivity analysis (all available ALSPAC partici-
pants), the six-year observed risk was 7.54% for
females and 5.76% for males. In our primary anal-
ysis, we included 3030 person-years of observation.

In our sensitivity analysis, we included 19 020 per-
son-years of observation. Characteristics of
included participants for both the primary and sen-
sitivity analyses are presented in Table 1 and
Table S6 respectively. Associations between algo-
rithm predictors and outcome are reported in
Table S7.

Primary analysis – psychosis sample. Discrimina-
tion. At age 18 years, Harrell’s C Statistics were
as follows: QDiabetes males C = 0.75 (95% CI,
0.72–0.78) and females C = 0.78 (95% CI, 0.73–
0.84); QRISK3 males C = 0.58 (95% CI, 0.52–
0.65) and females C = 0.61 (95% CI, 0.55–0.66);
and PRIMROSE C = 0.73 (95% CI, 0.70–0.78).
After substituting participant ages to the mean age
of the original studies, Harrell’s C statistics mildly
improved for each algorithm. Similarly, at age
18 years, R2 statistics were marginally higher in
females than males in QDiabetes and QRISK3 and
improved mildly after substituting participant ages
to the mean age of the original studies. See
Table 2.

Calibration. At age 18 years, calibration was poor
across all three algorithms, with observed risk esti-
mates consistently higher than predicted risk esti-
mates. After substituting participant ages to the
mean age of the original studies, calibration
improved markedly in all three algorithms. See
Figure 3.

Sensitivity analysis – whole ALSPAC sample. Dis-
crimination. QDiabetes and QRISK3 performed
better in the overall sample than the psychosis
sample. PRIMROSE performed better in the psy-
chosis sample. Harrell’s C Statistics were as

Table 1. Characteristics of ALSPAC participants with or at risk of psychosis
included in exploratory analysis

Characteristic (N, % unless stated) Females Males

Number of participants 323 (63.9) 182 (36.1)
Total person-years of observation 1938 1092
Ethnicity – White/Not-recorded 315 (97.5) 176 (96.7)
Systolic BP (mmHG), Mean (SD) 109.88 (8.28) 118.90 (9.67)
HDL (mmol/L), Mean (SD) 1.29 (0.36) 1.18 (0.33)
FPG (mmol/L), Mean (SD) 4.88 (0.36) 5.19 (0.66)
Total cholesterol (mmol/L), Mean (SD) 3.86 (0.68) 3.55 (0.63)
Chol:HDL ratio, ratio SD 3.04 (0.85) 3.08 (0.85)
BMI (kg/m2), Mean (SD) 23.75 (3.55) 23.62 (4.50)
Family history cardiometabolic/Cardiovascular
disorders

194 (60.1) 117 (64.3)

Smoking (≥1 cigarette daily) 173 (53.6) 100 (54.9)
Depression 90 (27.9) 28 (15.4)
Alcohol use 47 (15.4) 31 (16.7)
Antidepressant medication 45 (14.7) 16 (8.6)
Antipsychotic medication 12 (3.7) 6 (2.1)
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follows: QDiabetes males C = 0.72 (95% C.I.,
0.70–0.73) and females C = 0.82 (95% CI, 0.79–
0.84); QRISK3 males C = 0.64 (95% CI, 0.62–
0.66) and females C = 0.62 (95% CI, 0.59–0.65);
and PRIMROSE C = 0.68 (95% CI, 0.67–0.70).
Similarly, at age 18 years, R2 statistics were mar-
ginally higher in females than males in QDiabetes,
but marginally higher in males in QRISK3. After
substituting age to the mean age of the original
studies, Harrell’s C statistics and R2 improved in
all three algorithms. See Table S8.

Calibration. In a similar pattern to the psychosis
sample, at age 18 years, calibration was poor
across all three algorithms, with observed risk esti-
mates consistently higher than predicted risk esti-
mates. After substituting participant ages to the
mean age of the original studies, calibration
improved markedly in all three algorithms. See
Figure S4.

Discussion

Main findings

We performed a systematic review of car-
diometabolic risk prediction algorithms developed
either for the general or psychiatric populations
and considered their potential suitability for young
people with psychosis. We also used data from a
sample of relatively young adults to first explore
whether existing cardiometabolic risk prediction
algorithms may be suitable for young people with
or at risk of psychosis and second to explore the
impact of the manner in which age is weighted in
existing cardiometabolic risk prediction algo-
rithms. We do not present the results of our
exploratory analysis as an external validation of
the three algorithms, since the algorithms we tested
were not developed to predict metabolic syndrome.
Rather, we present our findings as a means to
explore the likely suitability of these algorithms for
a population of individuals who may be at higher

cardiometabolic risk compared with the general
population. It should be made clear from the out-
set that the three algorithms we tested, as we show
in the results of our systematic review, were devel-
oped and validated on large samples and perform
well in the populations they were designed for.

Systematic review

We identified a substantial number of car-
diometabolic risk prediction algorithms, yet most
have not been integrated into clinical practice. Pre-
dicted outcomes ranged from prediabetes and
T2DM, CVD or transient ischaemic attack and
stroke. The five most commonly included predic-
tors across all algorithms were age, smoking, sys-
tolic blood pressure, sex and BMI. One included
algorithm (PRIMROSE) was developed in a popu-
lation of people with severe mental illness (30),
which predicted risk of CVD. Two (QRISK3 and
QDiabetes) were developed in the general popula-
tion and included psychiatric predictors (28, 29)
such as a diagnosis of schizophrenia.

All included algorithms were developed in sam-
ples of middle- to older-age adults. One might tra-
ditionally consider this proportionate, since
cardiometabolic disorders are traditionally consid-
ered diseases of advancing age. Yet, car-
diometabolic risk still exists in the absence of
advancing age; even in the general population,
there is an increasing prevalence of early-onset
T2DM (140) and childhood obesity (141), likely
related to the shift towards a more sedentary life-
style and unhealthy diet in recent decades. The
absence of an algorithm developed for younger
populations is an important finding, since early
intervention may reduce the risk of young people
forming part of a future generation of patients
with chronic cardiovascular diseases (142). This
finding suggests the need for either new or recali-
brated versions of currently existing car-
diometabolic risk algorithms tailored to the
younger generations.

Table 2. Discrimination statistics for algorithms tested on psychosis risk group at age 18 years and mean age of original study

Algorithm

Harrell’s C statistic (95% CI); R2 statistic

Age 18 years Mean age original study

Male Female Male Female

QDiabetes FPG C = 0.70 (0.65–0.74)
R2 = 0.13 (0.09–0.19)

C = 0.78 (0.73–0.84)
R2 = 0.16 (0.10–0.24)

C = 0.78 (0.75–0.80)
R2 = 0.21 (0.14–0.27)

C = 0.83 (0.80–0.87)
R2 = 0.25 (0.19–0.31)

QRISK3 C = 0.58 (0.52–0.65)
R2 = 0.09 (0.05–0.16)

C = 0.61 (0.55–0.66)
R2 = 0.10 (0.03–0.18)

C = 0.63 (0.58–0.69)
R2 = 0.11 (0.07–0.16)

C = 0.66 (0.59–0.72)
R2 = 0.13 (0.05–0.20)

PRIMROSE Lipid 0.73 (0.70–0.78)
R2 = 0.13 (0.10–0.0.17)

0.75 (0.69–0.79)
R2 = 0.16 (0.12–0.22)
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Primary prevention is the best means with which
to address the personal and societal burden attrib-
uted to T2DM, CVD and its complications (143).

Whilst this message is important for the general
population, it is particularly important for young
people with/at risk of psychosis, who are at a
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Fig. 3. Calibration plots of algorithms tested on ALSPAC psychosis risk group at age 18 years and at mean age of original study.
Perfect calibration (dark grey) would follow the diagonal (light grey) line, indicating perfect agreement between observed/expected
risk. Grouped observations were split at each 0.2 of predicted risk.
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higher risk of precipitant cardiometabolic disor-
ders. This population may be more likely to smoke
(144), exercise less (145) and eat a more unhealthy
diet (145) than their peers and yet may also be pre-
scribed medication that in itself can adversely and
severely impact cardiometabolic indices (146). Fur-
ther, they may be faced with inappropriate barriers
to accessing healthcare (147), diagnostic overshad-
owing (148) and may have an intrinsic biological
propensity for altered cardiometabolic function
(149). Meta-analyses featuring mostly antipsy-
chotic-na€ıve young people with first-episode psy-
chosis have consistently reported an increased
incidence of insulin resistance, impaired glucose
tolerance (9, 10) and dyslipidaemia (9, 150, 151)
compared with matched controls from the general
population, after adjusting for anthropometric and
sociodemographic factors. Each is predeterminants
of cardiometabolic disorders such as T2DM and
obesity. These factors may not be adequately cap-
tured by currently existing algorithms. Addition-
ally, meta-analyses of cross-sectional studies
suggest that psychosis is associated with higher
levels of circulating inflammatory markers (152–
155), and evidence from some longitudinal studies
suggests an association between inflammatory
markers at baseline and psychosis at follow-up
(156–158), although other longitudinal studies
have reported negative findings (159). Inflamma-
tory states are also associated with car-
diometabolic disorders (160–163). Whilst 15
relatively newer algorithms from our systematic
review did include inflammatory predictors, none
also included psychiatric predictors.

Each of the three algorithms that did include
psychiatric factors featured an antipsychotic-re-
lated predictor. Antipsychotic-associated weight
gain can occur relatively quickly after initiation
(164) and is associated with altered eating beha-
viours (165) and sedentariness (166). However,
whilst there are some efficacy differences between
antipsychotics, these are gradual rather than dis-
crete (167). Differences in side-effects are more
marked, and each has an inherently different
impact upon cardiometabolic risk (168). This may
be explained by differing affinities to receptors
other than the dopamine-2 (D2) receptor, for
example the histamine-1 (H1) receptor, serotonin-
2c (5-HT2c) and adrenergic receptors (a2 and b3)
(169), which may have a role in the regulation of
food intake (170). The varied impact upon car-
diometabolic risk by different antipsychotics does
not abide by the traditional distinctions of either
typical/atypical or first/second generation, which
were the binary distinctions of the included algo-
rithms. A more appropriate antipsychotic

predictor may instead model antipsychotics based
on their relative cardiometabolic risk.

We used the PROBAST tool (14) to examine the
risk of bias of included studies in our systematic
review. Only two studies were rated as low risk of
bias, with all others rated as either unclear or high
risk of bias. This may be a reflection of the rela-
tively recent introduction of the ‘Transparent
Reporting of a Multivariable Prediction Model for
Individual Prognosis or Diagnosis’ (TRIPOD)
guidelines for prediction model studies (139). Nev-
ertheless, the results suggest that the reported per-
formance statistics and therefore clinical validity
of the majority of included studies should be
accepted with extreme caution.

The EPV ratio also varied widely between stud-
ies. A low EPV ratio can be an indicator of model
overfit (17) which can bias results. We identified 20
studies with an EPV ratio of likely < 10, and there-
fore, the performance reported in those studies
should be interpreted with caution. Finally, it is
striking that whilst many included studies pro-
moted the use of their algorithms in clinical prac-
tice, there appears to have been relatively little
follow-up to assess either clinical or economic
impact. A notable exception was PRIMROSE
(30), which was the only algorithm developed and
validated on a sample of people with mental ill-
ness. A cost-effectiveness analysis (171) found it
improved quality of life and reduced healthcare-re-
lated costs in comparison with using no algorithm.

A previously published systematic review (172)
examining cardiovascular risk prediction algorithms
in the general population also identified a very large
number of studies. The review similarly concluded
the methodological shortcomings of most risk pre-
diction algorithms likely limit their suitability for
clinical practice. The previous review differs from
our own since we were interested in identifying origi-
nal or recalibrated algorithms and assessing their
suitability for young people with psychosis. There-
fore, we did not include studies reporting new valida-
tions in a similar population to already validated
algorithms. The previous review also presented sex-
stratified algorithms as distinct entities, increasing
the apparent number of algorithms they reported.
For ease of simplicity and in consideration of our
overarching research question, we did not take this
step. Finally, a large number of new algorithms have
been developed since the previous review, which we
were able to include in our own.

Exploratory analysis

We considered three algorithms for exploratory
analysis: QRISK3, QDiabetes and PRIMROSE.
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These were selected due to the large sample sizes in
model development and validation, model perfor-
mance statistics, relatively low risk of bias and the
inclusion of psychiatric predictors/development in
a psychiatric population.

We found that discrimination statistics were rel-
atively good at age 18 years for QDiabetes and
PRIMROSE and improved further when substitut-
ing to the mean age of original studies. This means
that QDiabetes and PRIMROSE were able to pre-
dict higher risks in ‘cases’ than ‘non-cases’, even in
relatively young adults. This did not apply to
QRISK3, particularly in males, where the algo-
rithm was little better than chance at discriminat-
ing higher and lower cardiometabolic risk in young
adults with or at risk of psychosis.

For all three algorithms, however, the discrimi-
native ability in our sample was attenuated com-
pared with the original published studies (28–30).
This may be because our sample included younger
participants than the original studies. For example,
both QRISK3 and QDiabetes were developed and
validated in participants aged 25 and over, and
PRIMROSE was developed and validated in par-
ticipants aged 30 and over. QRISK3 and QDia-
betes set a minimum age of 25 when using their
online calculators, although PRIMROSE sets a
minimum of age 18 years. Additionally, in our pri-
mary analysis, we tested a sample of participants
with or at risk of psychosis, whereas QDiabetes
and QRISK3 were designed for use in the general
population. Furthermore, we tested a different out-
come compared with the original algorithms. We
tested metabolic syndrome since it is an established
precursor of both T2DM and CVD (26, 27) and is
a more suitable outcome for younger populations.
The improvement in discrimination statistics after
substituting age provides some face validity to our
choice of outcome.

However, discriminative ability is only half the
story, since discrimination statistics cannot assess
the accuracy of the amount of risk apportioned by
a model; this represents a test of absolute risk esti-
mates and is examined with a measure of calibra-
tion. Our calibration plots at 18 years showed that
observed risk was systematically greater than pre-
dicted risk in all models, suggesting a notable
underprediction of risk in younger participants.
Calibration plots improved markedly in all algo-
rithms when we artificially substituted age to the
mean age of the original studies. This suggests that
the manner with which age is modelled in current
algorithms is a major limiting factor in applying
them to younger populations. This is likely because
many cardiometabolic risk factors are cumulative
over time (173); thus, age becomes increasingly

important with regard to cardiometabolic risk as
one gets older. This notion is elegantly painted by
all three algorithms, which modelled age as either a
non-linear function, included interactions between
age and other predictors, or both.

Strengths and limitations

Strengths of this systematic review include follow-
ing PRISMA reporting guidelines (13), as would
be expected for a high-quality review. Alongside
the review, we were able to complement our find-
ings with an exploratory analysis using data from
a large birth cohort of young adults. We were able
to test three validated cardiometabolic risk predic-
tion algorithms which are commonly used in clini-
cal medicine in the UK, on a different population
who are in clear and crucial need of a suitable tool.

Limitations of the study first and foremost relate
to the exploratory analysis. The three algorithms we
tested were not designed for use in young adults,
though this in itself should not be a barrier to
explore potential suitability in a different popula-
tion. Nevertheless, our results should not be seen to
cast doubt on the predictive ability of such algo-
rithms when applied to the populations intended by
the authors. We were unable to include every predic-
tor from the algorithms we tested, which may have
impacted upon performance statistics. That said, the
impact of this limitation on our results may not have
been uniform for each predictor we could not
include. For example, even if we had the data, it is
unlikely that many participants in our relatively
young cohort would have diagnosed CVD or
chronic kidney disease, a history of gestational dia-
betes or be prescribed statins. Also, our measured
outcome differed from the outcome of the algo-
rithms we tested. Whilst three algorithms included
in the systematic review did aim to predict risk of
metabolic syndrome, we did not consider them for
our exploratory analysis since they did not include
psychiatric predictors, were at relatively high risk of
bias, and study authors did not publish their fully
specified algorithm equations. Nevertheless, meta-
bolic syndrome is a precursor of T2DM (26) and
CVD (27), and the relatively good performance of
the algorithm when we artificially substituted age to
the mean age of the original study suggests face
validity to our chosen outcome. Our sample size was
relatively small compared with the original studies.
However, by testing a more encompassing outcome,
we were able to include a greater number of cases
and reduce the impact of model overfit.

Other limitations relate to the systematic review.
We were unable to follow a meta-analytic
approach to the synthesis of results due to study
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heterogeneity. The lack of meta-analytic approach
meant we were unable to examine the risk of publi-
cation bias, which may have played a part in the
configuration of studies we included in our synthe-
sis, since only three included studies were not pub-
lished in peer-reviewed journals.
In conclusion, young people who are at higher risk
than the general population of developing psy-
chosis are also at higher risk of developing car-
diometabolic disorders. A suitable cardiometabolic
risk prediction algorithm for this population
would be highly beneficial to general and psychi-
atric practitioners to help them to tailor treatment
plans with the aim of reducing long-term physical
and psychiatric morbidity. Existing car-
diometabolic risk algorithms cannot be recom-
mended for this purpose since they likely
underestimate the cardiometabolic risk of all
young people, let alone a group already at signifi-
cantly higher risk than the general population.
Existing algorithms require recalibration to suit
younger populations, and, better still, a new car-
diometabolic risk prediction algorithm is required
which is specifically developed for young people
with psychosis. A well-designed algorithm may
include a more appropriate distinction of metabol-
ically active antipsychotics; should more appropri-
ately weight the predictors for the specific
characteristics of young people with psychosis; and
may include a more age-appropriate outcome,
such as metabolic syndrome. Further, particular
attention should be paid to patient acceptability,
to ensure the algorithm is actually used in clinical
practice rather than simply buried in a research
database. In lieu of a suitable algorithm, simple
lifestyle interventions such as smoking cessation,
encouraging a healthy diet and increasing physical
activity must be offered to all young people with or
at risk of psychosis. Indeed, encouraging results
are emerging from studies of primary prevention in
this population (174, 175), who may not have yet
developed chronic and pervasive lifestyle beha-
viours which are associated with chronic illness.
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Additional Supporting Information may be found in the online
version of this article:

Figure S1. Flow-diagram of included participants at risk of
psychosis at age 18 or 24 years.
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Figure S2. Flow-diagram of included participants in sensitivity
analysis of all participants at age 18 years.
Figure S3. Relative weighting of age vs other predictors in
PRIMROSE(6).
Figure S4. Calibration plots of algorithms tested in ALSPAC
at age 18 years and at mean age of original study (whole sam-
ple).
Table S1. Predictors included in QDiabetes, QRISK3 and
PRIMROSE.
Table S2. Risk of bias assessment using PROBAST.
Table S3. Participant characteristics of studies included in sys-
tematic review.

Table S4. Algorithm characteristics of studies included in sys-
tematic review.
Table S5. Algorithm performance of studies included in sys-
tematic review.
Table S6. Characteristics of ALSPAC participants included in
exploratory analysis (whole sample).
Table S7. Odds ratio and 95% CI for the association between
predictors included in algorithms measured at 18 years and
metabolic syndrome at 24 years in the ALSPAC Cohort.
Table S8. Discrimination statistics for algorithms tested on
whole sample at age 18 years and mean age of original study.
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