6,096 research outputs found

    Approaching Space Time Through Velocity in Doubly Special Relativity

    Full text link
    We discuss the definition of velocity as dE/dp, where E,p are the energy and momentum of a particle, in Doubly Special Relativity (DSR). If this definition matches dx/dt appropriate for the space-time sector, then space-time can in principle be built consistently with the existence of an invariant length scale. We show that, within different possible velocity definitions, a space-time compatible with momentum-space DSR principles can not be derived.Comment: 11 pages, no figures, minor changes, references added, final version to appear in PR

    Modified Special Relativity on a fluctuating spacetime

    Get PDF
    It was recently proposed that deformations of the relativistic symmetry, as those considered in Deformed Special Relativity (DSR), can be seen as the outcome of a measurement theory in the presence of non-negligible (albeit small) quantum gravitational fluctuations [1,2]. In this paper we explicitly consider the case of a spacetime described by a flat metric endowed with stochastic fluctuations and, for a free particle, we show that DSR-like nonlinear relations between the spaces of the measured and classical momenta, can result from the average of the stochastic fluctuations over a scale set be the de Broglie wavelength of the particle. As illustrative examples we consider explicitly the averaging procedure for some simple stochastic processes and discuss the physical implications of our results.Comment: 7 pages, no figure

    Non-linear diffusive acceleration of heavy nuclei in supernova remnant shocks

    Full text link
    We describe a semi-analytical approach to non-linear diffusive shock acceleration in the case in which nuclei other than protons are also accelerated. The structure of the shock is determined by the complex interplay of all nuclei, and in turn this shock structure determines the spectra of all components. The magnetic field amplification upstream is described as due to streaming instability of all nuclear species. The amplified magnetic field is then taken into account for its dynamical feedback on the shock structure as well as in terms of the induced modification of the velocity of the scattering centers that enters the particle transport equation. The spectra of accelerated particles are steep enough to be compared with observed cosmic ray spectra only if the magnetic field is sufficiently amplified and the scattering centers have high speed in the frame of the background plasma. We discuss the implications of this generalized approach on the structure of the knee in the all-particle cosmic ray spectrum, which we interpret as due to an increasingly heavier chemical composition above 101510^{15}eV. The effects of a non trivial chemical composition at the sources on the gamma ray emission from a supernova remnant when gamma rays are of hadronic origin are also discussed.Comment: 23 pages, 5 figures, minor changes to reflect the published versio

    Radiative decays of light vector mesons in a quark level linear sigma model

    Get PDF
    We calculate the P0 to gamma gamma, V0 to P0 gamma and V0to V'0 gamma gamma decays in the framework of a U(3)xU(3) linear sigma model which includes constituent quarks. For the first two decays this approach improves results based on the anomalous Wess-Zumino term, with contributions due to SU(3) symmetry breaking and vector mixing. The phi to (omega,rho) gamma gamma decays are dominated by resonant eta' exchange . Our calculation for the later decays improves and update similar calculations in the -closely related- framework of vector meson dominance. We obtain BR(phi to rho gamma gamma)=2.5x10^{-5} and BR(phi to omega gamma gamma)=2.8x10^{-6} within the scope of the high-luminosity phi factories.Comment: 8 pages, submitted to Phys. Rev.

    Deformed Special Relativity as an effective theory of measurements on quantum gravitational backgrounds

    Full text link
    In this article we elaborate on a recently proposed interpretation of DSR as an effective measurement theory in the presence of non-negligible (albeit small) quantum gravitational fluctuations. We provide several heuristic arguments to explain how such a new theory can emerge and discuss the possible observational consequences of this framework.Comment: 11 pages, no figure

    Impact of total automation consolidating first-line laboratory tests on diagnostic blood loss

    Get PDF
    Background: Blood loss for laboratory testing may contribute to hospital-acquired anemia. When implementing the core laboratory (core-lab) section, we consolidated first-line tests decreasing the number of tubes previously dispatched to different sites. Here, hypothesized benefits of the amount of blood volume drawn were explored. Methods: We retrieved, using a laboratory information system (LIS), the number of tubes received by laboratories interested in the change from all clinical wards in a year-based period, i.e. 2013 for pre-core-lab and 2015 for core-lab system, respectively. Data were expressed as the overall number of tubes sent to laboratories, the corresponding blood volume, and the number of laboratory tests performed, normalized for the number of inpatients. Results: After consolidation, the average number of blood tubes per inpatient significantly decreased (12.6 vs. 10.7, p\u2009<\u20090.001). However, intensive care units (ICUs) did not reduce the number of tubes per patient, according to the needs of daily monitoring of their clinical status. The average blood volume sent to laboratories did not vary significantly because serum tubes for core-lab required higher volumes for testing up to 55 analytes in the same transaction. Finally, the number of requested tests per patient during the new osystem slightly decreased ( 122.6%). Conclusions: Total laboratory automation does not automatically mean reducing iatrogenic blood loss. The new system affected the procedure of blood drawing in clinical wards by significantly reducing the number of handled tubes, producing a benefit in terms of costs, labor and time consumption. Except in ICUs, this also slightly promoted some blood saving. ICUs which engage in phlebotomizing patients daily, did not take advantage from the test consolidation

    Signatures of the transition from galactic to extragalactic cosmic rays

    Get PDF
    We discuss the signatures of the transition from galactic to extragalactic cosmic rays in different scenarios, giving most attention to the dip scenario. The dip is a feature in the diffuse spectrum of ultra-high energy (UHE) protons in the energy range 1×10184×10191\times 10^{18} - 4\times 10^{19} eV, which is caused by electron-positron pair production on the cosmic microwave background (CMB) radiation. The dip scenario provides a simple physical description of the transition from galactic to extragalactic cosmic rays. Here we summarize the signatures of the pair production dip model for the transition, most notably the spectrum, the anisotropy and the chemical composition. The main focus of our work is however on the description of the features that arise in the elongation rate and in the distribution of the depths of shower maximum XmaxX_{\rm max} in the dip scenario. We find that the curve for Xmax(E)X_{\max}(E) shows a sharp increase with energy, which reflects a sharp transition from an iron dominated flux at low energies to a proton dominated flux at E1018E\sim 10^{18} eV. We also discuss in detail the shape of the XmaxX_{\max} distributions for cosmic rays of given energy and demonstrate that this represents a powerful tool to discriminate between the dip scenario and other possible models of the transition.Comment: Version accepted for publication in Physical Review

    Imaginary chemical potential and finite fermion density on the lattice

    Get PDF
    Standard lattice fermion algorithms run into the well-known sign problem at real chemical potential. In this paper we investigate the possibility of using imaginary chemical potential, and argue that it has advantages over other methods, particularly for probing the physics at finite temperature as well as density. As a feasibility study, we present numerical results for the partition function of the two-dimensional Hubbard model with imaginary chemical potential. We also note that systems with a net imbalance of isospin may be simulated using a real chemical potential that couples to I_3 without suffering from the sign problem.Comment: 9 pages, LaTe

    Proton induced Dark Count Rate degradation in 150-nm CMOS Single-Photon Avalanche Diodes

    Full text link
    Proton irradiation effects on a Single-Photon Avalanche Diodes (SPADs) device manufactured using a 150-nm CMOS process are presented. An irradiation campaign has been carried out with protons of 20 MeV and 24 MeV on several samples of a test chip containing SPADs arrays with two different junction layouts. The dark count rate distributions have been analyzed as a function of the displacement damage dose. Annealing and cooling have been investigated as possible damage mitigation approaches. We also discuss, through a space radiation simulation, the suitability of such devices on several space mission case-studies.Comment: This is an author-created, un-copyedited version of an article accepted for publication/published in Nuclear Instruments and Methods in Physics Research Section A. The Version of Record is available online at https://doi.org/10.1016/j.nima.2019.16272

    Traceability validation of six enzyme measurements on the Abbott Alinity c analytical system

    Get PDF
    Background: Laboratory professionals should independently verify the correct implementation of metrological traceability of commercial measuring systems and determine if their performance is fit for purpose. We evaluated the trueness, uncertainty of measurements, and transferability of six clinically important enzyme measurements (alanine aminotransferase [ALT], alkaline phosphatase [ALP], aspartate aminotransferase [AST], creatine kinase [CK], \u3b3-glutamyltransferase [\u3b3GT], and lactate dehydrogenase [LDH]) performed on the Abbott Alinity c analytical system. Methods: Target values and associated uncertainties were assigned to three pools for each enzyme by using the International Federation of Clinical Chemistry and Laboratory Medicine (IFCC) reference measurement procedures (RMPs) and the pools were then measured on the Alinity system. Bias estimation and regression studies were performed, and the uncertainty associated with Alinity measurements was also estimated, using analytical performance specifications (APS) derived from biological variability of measurands as goals. Finally, to validate the transferability of the obtained results, a comparison study between two Alinity systems located in Milan, Italy, and Bydgoszcz, Poland, was carried out. Results: Correct implementation of traceability to the IFCC RMPs and acceptable measurement uncertainty fulfilling desirable (ALP, AST, LDH) or optimal APS (ALT, CK, \u3b3GT) was verified for all evaluated enzymes. An optimal alignment between the two Alinity systems located in Milan and Bydgoszcz was also found for all enzyme measurements. Conclusions: We confirmed that measurements of ALT, ALP, AST, CK, \u3b3GT, and LDH performed on the Alinity c analytical system are correctly standardized to the IFCC reference measurement systems and the system alignment is consistent between different platforms
    corecore