522 research outputs found
Reactions of p-Nitrophenyloxirane with Amines Containing Fragments with Bicyclic Skeleton
Reactions of p-nitrophenyloxirane with amines containing fragments with bicyclic skeleton of norbornene, norbornane, epoxynorbornane (stereoisomeric exo- and endo-5-aminomethylbicyclo[2.2.1]hept-2-enes, N-benzyl-endo-5-aminomethylbicyclo[2.2.1]hept-2-ene, endo-5-(2-aminoethyl)bicyclo[2.2.1]hept-2-ene, stereoisomeric exo- and endo-2-aminomethylbicyclo[2.2.1]heptanes, 2-(1-aminoethyl)bicyclo[2.2.1]-heptane, exo-5-aminomethyl-exo-2,3-epoxybicyclo[2.2.1]heptane) were investigated. The aminolysis of pnitrophenyloxirane occurred regioselectively according to Krasusky rule as was proved by 1H and 13C NMR data. As shown by 1H and 13C NMR spectroscopy the oxyalkylation product obtained from N-benzyl-endo-5-aminomethylbicyclo[2.2.1]hept-2-ene was composed of two diastereomers originating from the presence of a chiral nitrogen atom in the rear part of the rigid bicyclic skeleton. New products of amino groups transformation in the molecules of hydroxyamines were obtained by reaction with p-methylbenzoyl chloride and p-nitrophenylsulfonyl chloride. Regioselectivity of the attack of electrophilic reagents on the nitrogen in the hydroxyamines was confirmed by IR and 1H NMR spectra of the products. The data on pharmacological activity tests of N-2-hydroxyethyl(p-nitrophenyl)-5-aminomethylbicyclo[2.2.1]hept-2-ene are reported
The origin of seed photons for Comptonization in the black hole binary Swift J1753.5-0127
Aims. The black hole binary SWIFT J1753.5-0127 is providing a unique data set
to study accretion flows. Various investigations of this system and of other
black holes have not, however, led to an agreement on the accretion flow
geometry or on the seed photon source for Comptonization during different
stages of X-ray outbursts. We place constraints on these accretion flow
properties by studying long-term spectral variations of this source. Methods.
We performed phenomenological and self-consistent broad band spectral modeling
of Swift J1753.5-0127 using quasi-simultaneous archived data from
INTEGRAL/ISGRI, Swift/UVOT/XRT/BAT, RXTE/PCA/HEXTE and MAXI/GSC instruments.
Results. We identify a critical flux limit, F \sim 1.5 \times 10^{-8}
erg/cm^2/s, and show that the spectral properties of SWIFT J1753.5-0127 are
markedly different above and below this value. Above the limit, during the
outburst peak, the hot medium seems to intercept roughly 50 percent of the disk
emission. Below it, in the outburst tail, the contribution of the disk photons
reduces significantly and the entire spectrum from the optical to X-rays can be
produced by a synchrotron-self-Compton mechanism. The long-term variations in
the hard X-ray spectra are caused by erratic changes of the electron
temperatures in the hot medium. Thermal Comptonization models indicate
unreasonably low hot medium optical depths during the short incursions into the
soft state after 2010, suggesting that non-thermal electrons produce the
Comptonized tail in this state. The soft X-ray excess, likely produced by the
accretion disk, shows peculiarly stable temperatures for over an order of
magnitude changes in flux. Conclusions. The long-term spectral trends of SWIFT
J1753.5-0127 are likely set by variations of the truncation radius and a
formation of a hot, quasi-spherical inner flow in the vicinity of the black
hole. (abridged)Comment: 16 pages, 8 figures, published in A&
Spectral analysis of X-ray pulsars with the INTEGRAL observatory
We studied spectra for 34 accretion-powered X-ray and one millisecond pulsars that were within the field of view of the INTEGRAL observatory over two years (December 2002 - January 2005) of its in-orbit operation and that were detected by its instruments at a statistically significant level (>8 sigma in the energy range 18-60 keV). There are seven recently discovered objects of this class among the pulsars studied: 2RXP J130159.6-635806, IGR/AX J16320-4751, IGR J16358-4726, AX J163904-4642, IGR J16465-4507, SAX/IGR J18027-2017 and AX J1841.0-0535. We analyze the evolution of spectral parameters as a function of the intensity of the sources and compare these with the results of previous studies
A comparison of hydrogen photoproduction by sulfur-deprived Chlamydomonas reinhardtii under different growth conditions
Continuous photoproduction of H-2 by the green alga, Chlamydomonas reinhardtii, is observed after incubating the cultures for about a day in the absence of sulfate and in the presence of acetate. Sulfur deprivation causes the partial and reversible inactivation of photosynthetic O-2 evolution in algae, resulting in the light-induced establishment of anaerobic conditions in sealed photobioreactors, expression of two [FeFe]-hydrogenases in the cells, and H-2 photoproduction for several days. We have previously demonstrated that sulfur-deprived algal cultures can produce H-2 gas in the absence of acetate, when appropriate experimental protocols were used (Tsygankov, A.A., Kosourov, S.N., Tolstygina, IN., Ghirardi, M.L., Seibert, M., 2006. Hydrogen production by sulfur-deprived Chlamydomonas reinhardtii under photoautotrophic conditions. Int. J. Hydrogen Energy 31, 1574-1584). We now report the use of an automated photobioreactor system to compare the effects of photoautotrophic, photoheterotrophic and photomixotrophic growth conditions on the kinetic parameters associated with the adaptation of the algal cells to sulfur deprivation and H-2 photoproduction. This was done under the experimental conditions outlined in the above reference, including controlled pH. From this comparison we show that both acetate and CO2 are required for the most rapid inactivation of photosystem II and the highest yield of H-2 gas production. Although, the presence of acetate in the system is not critical for the process, H-2 photoproduction under photoautotrophic conditions can be increased by optimizing the conditions for high starch accumulation. These results suggest ways of engineering algae to improve H-2 production, which in turn may have a positive impact on the economics of applied systems for H,, production. (c) 2007 Elsevier B.V. All rights reserved
Expanding hot flow in the black hole binary SWIFT J1753.5-0127: evidence from optical timing
We describe the evolution of optical and X-ray temporal characteristics
during the outburst decline of the black hole X-ray binary SWIFT J1753.5-0127.
The optical/X-ray cross-correlation function demonstrates a single positive
correlation at the outburst peak, then it has multiple dips and peaks during
the decline stage, which are then replaced by the precognition dip plus peak
structure in the outburst tail. Power spectral densities and phase lags show a
complex evolution, revealing the presence of intrinsically connected optical
and X-ray quasi-periodic oscillations. For the first time, we quantitatively
explain the evolution of these timing properties during the entire outburst
within one model, the essence of which is the expansion of the hot accretion
flow towards the tail of the outburst. The pivoting of the spectrum produced by
synchrotron Comptonization in the hot flow is responsible for the appearance of
the anti-correlation with the X-rays and for the optical quasi-periodic
oscillations. Our model reproduces well the cross-correlation and phase lag
spectrum during the decline stage, which could not be understood with any model
proposed before.Comment: 13 pages, 11 figures, MNRAS submitte
V0332+53 in the outburst of 2004--2005: luminosity dependence of the cyclotron line and pulse profile
We present results of observations of the transient X-ray pulsar V0332+53
performed during a very powerful outburst in Dec, 2004 -- Feb, 2005 with the
INTEGRAL and RXTE observatories in a wide (3-100 keV) energy band. A cyclotron
resonance scattering line at an energy of ~26 keV has been detected in the
source spectrum together with its two higher harmonics at ~50 and ~73 keV,
respectively. We show that the energy of the line is not constant but linearly
changes with the source luminosity. Strong pulse profile variations, especially
near the cyclotron line, are revealed for different levels of the source
intensity. We discuss the obtained results in terms of the theoretical models
of X-ray pulsars.Comment: Accepted for publication in MNRAS. 10 pages, 9 figure
N,N-Dimethoxy-N-tert-alkylamines: new synthesis methods and the crystal structure of the precursor
Under the methanolysis of N-methoxy-N-(1-pyridinium)amines salts 1aβc, nucleophilic substitution occurs at the nitrogen atom to form N,N-dimethoxyamines 2a,b; the crystal structure of precursor 1c has been studied
- β¦