114 research outputs found

    Нанофибробетон: многоуровневое армирование

    Get PDF
    Concrete is the most commonly used building material worldwide. One of its main disadvantages is the fragility of fracture and low crack resistance. The use of dispersed reinforcement of concrete composites is a promising direction in solving this type of problem. Dispersed fibers, evenly distributed over the entire volume of the material, create a spatial frame and contribute to the inhibition of developing cracks under the action of destructive forces. In order to increase the fracture toughness of concrete, dispersed fiber reinforcement is increasingly used in practice. The beginning of crack nucleation occurs at the nanoscale in the cement matrix. Thus, the use of nano-reinforcement with dispersed nanofibers can have a positive effect on the crack resistance of the cement composite. It is proposed to consider carbon nanotubes as such nanofibers. The presence of carbon nanofibers changes the microstructure and nanostructure of cement modified with carbon nanotubes. The result of the processes occurring in capillaries and cracks are deformations in the intergranular matrix, the free flow of which is prevented by rigid clinker grains and nanocarbon tubes, which creates a certain stress intensity at the tips of the separation cracks. The working hypothesis is confirmed that the required fracture toughness of structural concrete is provided by multi-level reinforcement: at the level of the crystalline aggregate of cement stone – carbon nanotubes, and at the level of fine-grained concrete – various macro-sized fibers (steel, polymer). Reinforcement of a crystalline joint with carbon nanotubes leads to an increase in the fracture toughness of the matrix (cement stone) by 20 %, compressive strength by 12 %, and tensile strength in bending by 20 %. When reinforcing at the level of fine-grained concrete, we obtain a composite – nanofibre-reinforced concrete with fracture toughness.Бетон является наиболее распространенным строительным материалом во всем мире. Основными его недостатками являются хрупкость при растяжении и низкая трещиностойкость. Применение дисперсного армирования бетонных композитов – перспективное направление в решении такого рода задач. Дисперсные волокна, равномерно распределенные по всему объему материала, создают пространственный каркас и способствуют торможению развития трещин под действием разрушающих сил. Для повышения трещиностойкости бетона на практике все чаще применяют армирование дисперсными волокнами. Начало зарождения трещины происходит на наноуровне в цементной матрице. Таким образом, применение наноармирования дисперсными нановолокнами может положительно сказаться на трещиностойкости цементного композита. В качестве таких нановолокон предлагается рассматривать углеродные нанотрубки. Присутствие углеродных нановолокон изменяет микроструктуру и наноструктуру цемента, модифицированного углеродными нанотрубками. Результатом процессов, происходящих в капиллярах и трещинах, являются деформации в межзерновой матрице, свободному течению которых препятствуют жесткие зерна клинкера и наноуглеродные трубки, что создает в вершинах разделительных трещин некоторую интенсивность напряжения. Подтверждена рабочая гипотеза, что требуемая трещиностойкость конструкционного бетона обеспечивается многоуровневым армированием: на уровне кристаллического заполнителя цементного камня – углеродными нанотрубками, на уровне мелкозернистого бетона – различными видами макроразмерной фибры (стальные, полимерные). Армирование углеродными нанотрубками кристаллического сростка приводит к повышению показателя вязкости разрушения матрицы (цементного камня) на 20 %, прочности на сжатие на 12 %, прочности на растяжение при изгибе на 20 %. При армировании на уровне мелкозернистого бетона получаем композит – нанофибробетон с вязкостью разрушения

    Многопараметрическая методика оценки показателей качества наномодифицированного фибробетона для строительной площадки

    Get PDF
    Nanomodified fiber-reinforced concrete is a building material for which the required characteristics of fracture toughness are a distinctive feature. Determination of the stress intensity factor of fiber-reinforced concrete makes it possible to correctly assess the resistance of the material during the formation and development of cracks. The proposed multi-parameter methodology for assessing the quality indicators of nanomodified fiber-reinforced concrete makes it possible to evaluate the quality of a fiber-reinforced concrete structure in construction and laboratory conditions. To carry out control at the construction site, modern and long-used methods of non-destructive testing are used: ultrasonic sounding, ultrasonic tomography, elastic rebound, separation with chipping. For laboratory studies, the technique provides for the manufacture of prism samples that can be molded or cut from the body of the structure. This methodology makes it possible to obtain in laboratory conditions such material parameters as tensile strength in bending, tensile strength in splitting, critical stress intensity factor for normal separation, critical stress intensity factor for transverse shear, energy consumption for individual stages of deformation and destruction of the sample, as well as to evaluate the uniformity of distribution fibers. Moreover, it is provided to obtain all the parameters on one sample from the series, which eliminates errors and inaccuracies in the quality indicators of the material associated with different conditions of hardening, molding, inaccuracies in duplicating the composition.Наномодифицированный фибробетон – это строительный материал, отличительной особенностью которого являются требуемые характеристики трещиностойкости. Определение коэффициента интенсивности напряжений фибробетона дает возможность правильно оценить сопротивление материала при образовании и развитии трещин. Предлагаемая многопараметрическая методика оценки показателей качества наномодифицированного фибробетона позволяет оценить качество фибробетонной конструкции в строительных и лабораторных условиях. Для осуществления контроля на строительной площадке используют современные и давно применяемые методы неразрушающего контроля: ультразвуковое зондирование, ультразвуковую томографию, упругий отскок, отрыв со скалыванием. Для лабораторных исследований методика предусматривает изготовление призматических образцов, которые могут быть отлиты в форму или вырезаны из тела конструкции. Эта методика позволяет получить в лабораторных условиях такие параметры материала, как прочность на изгиб, прочность при растяжении на раскалывание, коэффициент интенсивности напряжений при нормальном отрыве, коэффициент интенсивности напряжений при поперечном сдвиге, энергозатраты на отдельные стадии деформации и разрушения образца, а также оценить равномерность распределения волокон. Более того, предусмотрено получение всех параметров на одном образце из серии, что исключает ошибки и неточности в показателях качества материала, связанные с различными условиями твердения, формования, погрешностями при дублировании состава

    Multi-Parameter Methodology for Assessing Quality Indicators of Nanomodified Fiber-Reinforced Concrete for Construction Site

    Get PDF
    Nanomodified fiber-reinforced concrete is a building material for which the required characteristics of fracture toughness are a distinctive feature. Determination of the stress intensity factor of fiber-reinforced concrete makes it possible to correctly assess the resistance of the material during the formation and development of cracks. The proposed multi-parameter methodology for assessing the quality indicators of nanomodified fiber-reinforced concrete makes it possible to evaluate the quality of a fiber-reinforced concrete structure in construction and laboratory conditions. To carry out control at the construction site, modern and long-used methods of non-destructive testing are used: ultrasonic sounding, ultrasonic tomography, elastic rebound, separation with chipping. For laboratory studies, the technique provides for the manufacture of prism samples that can be molded or cut from the body of the structure. This methodology makes it possible to obtain in laboratory conditions such material parameters as tensile strength in bending, tensile strength in splitting, critical stress intensity factor for normal separation, critical stress intensity factor for transverse shear, energy consumption for individual stages of deformation and destruction of the sample, as well as to evaluate the uniformity of distribution fibers. Moreover, it is provided to obtain all the parameters on one sample from the series, which eliminates errors and inaccuracies in the quality indicators of the material associated with different conditions of hardening, molding, inaccuracies in duplicating the composition

    Оптимизация состава нанофибробетона по вязкости разрушения модификацией матрицы

    Get PDF
    Concrete is a quasi-brittle building material that has low tensile strength. The process of its destruction under loading is inhomogeneous, due to the nature of the concrete structure mass, consisting of components with different physical and mechanical properties. Gradual deformation and destruction can be characterized as a process of formation and development of microcracks. The presence of different-sized components in concrete makes it possible to consider its structure as a multi-level system. In this system, each level is a matrix with its own structural inclusions, which play both a structure-forming role and the role of stress concentrators under the action of mechanical loads. The critical stress intensity factor is a good indicator of the crack resistance (fracture toughness) of a material. Nanoconcrete, from the point of view of a multilevel system, is a concrete composite with crack propagation inhibitors at the level of the cementing substance (carbon nanotubes are consi-dered as inhibitors). The presence of fiber fibers at subsequent scale levels allows us to consider concrete as a composite with multi-level dispersed reinforcement (nanofiber concrete). The paper discusses the change of concrete fracture toughness indicator (crack resistance) with dispersed reinforcement of the matrix at different structural levels. The presented for normal separation of notched cubes under eccentric compression with the determination of the stress intensity factor for concrete modified with carbon nanotubes acting as crack propagation inhibitors at the level of cementing substance (nanoconcrete), as well as for nanofiber concrete with dispersed reinforcement at the level of fine-grained concrete. Based on experimental studies by non-equilibrium methods of fracture mechanics, compositions of nanofiber-reinforced concrete of maximum crack resistance (fracture toughness) with different fiber concentrations and several types of matrices modified with nanocarbon additives are proposed in the paper.Бетон – квазихрупкий строительный материал, который имеет низкую прочность при растяжении. Процесс его разрушения при нагружении носит неоднородный характер, обусловленный сущностью структуры бетонной массы, состоящей из компонентов с различными физико-механическими свойствами. Постепенное деформирование и разрушение можно охарактеризовать как процесс образования и развития микротрещин. Наличие в бетоне разных по размеру компонентов позволяет рассматривать его строение как многоуровневую систему. В этой системе каждый уровень представляет собой матрицу со своими структурными включениями, которые играют как структурообразующую роль, так и роль концентраторов напряжений при действии механических нагрузок. Критический коэффициент интенсивности напряжений является хорошим показателем трещиностойкости (вязкости разрушения) материала. Нанобетон, с точки зрения многоуровневой системы, представляет собой бетонный композит с ингибиторами распространения трещин на уровне цементирующего вещества (в качестве ингибиторов рассматриваются углеродные нанотрубки). Присутствие фибровых волокон на последующих масштабных уровнях позволяет рассматривать бетон как композит с многоуровневым дисперсным армированием (нанофибробетон). В статье рассмотрено изменение показателя вязкости разрушения (трещиностойкости) бетона при дисперсном армировании матрицы на разных структурных уровнях. Приведены результаты испытаний на нормальный отрыв образцов-кубов с надрезами при внецентренном сжатии с определением коэффициента интенсивности напряжений для бетона, модифицированного углеродными нанотрубками, выступающими в качестве ингибиторов распространения трещин на уровне цементирующего вещества (нанобетон), а также для нанофибробетонов с дисперсным армированием на уровне мелкозернистого бетона. На основании экспериментальных исследований неравновесными методами механики разрушения предложены композиции нанофибробетона максимальной трещиностойкости (вязкости разрушения) с различной концентрацией фибры и несколькими типами матриц, модифицированных наноуглеродными добавками

    Oxygen transport in Pr nickelates: Elucidation of atomic-scale features

    Full text link
    Pr2NiO4+δ oxide with a layered Ruddlesden–Popper structure is a promising material for SOFC cathodes and oxygen separation membranes due to a high oxygen mobility provided by the cooperative mechanism of oxygen migration involving both interstitial oxygen species and apical oxygen of the NiO6 octahedra. Doping by Ca improves thermodynamic stability and increases electronic conductivity of Pr2 − xCaxNiO4+δ, but decreases oxygen mobility due to decreasing the oxygen excess and appearing of 1–2 additional slow diffusion channels at x ≥ 0.4, probably, due to hampering of cooperative mechanism of migration. However, atomic-scale features of these materials determining oxygen migration require further studies. In this work characteristics of oxygen diffusion in Pr2 − xCaxNiO4+δ (x = 0–0.6) are compared with results of the surface analysis by X-ray photoelectron spectroscopy and modeling of the interstitial oxygen migration by the plane-wave density functional theory calculations. According to the X-ray photoelectron spectroscopy data, the surface is enriched by Pr for undoped sample and by Ca for doped ones. The O1s peak at ~531 eV corresponding to a weakly bound form of surface oxygen located at Pr cations disappears at ~500 °C. Migration of interstitial oxygen was modeled for a I4/mmm phase of Pr2NiO4+δ. The interstitial oxygen anion repulses the apical one in the NiO6 octahedra pushing it into the tetrahedral site between Pr cations. The calculated activation barrier of this migration is equal to 0.585 eV, which reasonably agrees with the experimental value of 0.83 eV obtained by the oxygen isotope exchange method. At the same time, for the model compound Ca2NiO4+δ, obtained by isomorphic substitution of Pr by Ca in Pr2NiO4+δ, calculations implied formation of the peroxide ion comprised of interstitial and lattice oxygen species not revealed in the case of incomplete substitution (up to PrCaNiO4+δ composition). Hence, calculations in the framework of the plane-wave density functional theory provide a realistic estimation of specificity of oxygen migration features in Pr2NiO4+δ doped by alkaline-earth metals. © 2019 Elsevier B.V.Russian Science Foundation, RSF: 16-13-00112Support by Russian Science Foundation (Project 16-13-00112 ) is gratefully acknowledged

    Материалы на основе цемента, модифицированные наноразмерными добавками

    Get PDF
    The most common and reliable material without which modern construction is indispensable is concrete. The development of construction production is pushing for new solutions to improve the quality of concrete mix and concrete. The most demanded and significant indicators of a concrete mixture are the compressive strength and mobility of the concrete mixture. Every year, the volume of research on nanomaterials as modifying components of concrete is significantly increasing, and the results indicate the prospects for their use. Nanoparticles with a large specific surface are distinguished by chemical activity, can accelerate hydration and increase strength characteristics due to nucleation and subsequent formation of C–S–H and compaction of the material microstructure. Sol of nanosilica, which can be used instead of microsilica from industrial enterprises, and carbon nanomaterial have a wide reproduction base. This paper presents studies of these types of nanomaterials and the results of their application in cement concrete. Studies have shown that the effect is also observed with the introduction of an additive containing only one type of nanoparticles. The dependence of the obtained characteristics of cement concretes on the content of these nanomaterials has been established. It has been found that the best results were obtained with an additive in which the above-mentioned nanomaterials were used together. Compressive strength of  heavy concrete samples, improved by the complex nanodispersed system, was 78.7 MPa, which exceeds the strength of the sample containing the CNT additive in a pair with a super-plasticizer by 37 %.  The paper proposes the mechanism for  action of the presented complex additive.Самым распространенным и надежным материалом, без которого не обходится современное строительство, является бетон. Развитие строительного производства подталкивает к новым решениям в улучшении качества бетонной смеси и бетона. Наиболее востребованные и значимые показатели бетонной смеси – прочность при сжатии и подвижность бетонной смеси. С каждым годом исследований наноматериалов в качестве модифицирующих компонентов бетона становится больше, а результаты указывают на перспективность их применения. Наночастицы, обладающие большой удельной поверхностью, отличаются химической активностью, могут ускорять гидратацию и повышать прочностные показатели за счет зародышеобразования и последующего формирования C–S–H, уплотнения микроструктуры материала. Широкую базу воспроизводства имеют золь нанокремнезема, который может быть использован взамен микрокремнезема с индустриальных предприятий, и углеродный наноматериал. В статье представлены исследования данных видов наноматериалов и результаты их применения в цементных бетонах. Исследования показали, что эффект наблюдается также при введении добавки, содержащей только один вид наночастиц. Установлена зависимость получаемых характеристик цементных бетонов от количества данных наноматериалов. Выявлено, что наилучшие результаты были получены с добавкой, в которой совместно использовались вышеперечисленные наноматериалы. Прочность на сжатие образцов тяжелого бетона, улучшенная комплексной нанодисперсной системой, составила 78,7 МПа, что превышает прочность образца, содержащего добавку углеродных нанотрубок в паре с суперпластификатором, на 37 %. Изучен механизм действия представленной комплексной добавки

    Design of Materials for Solid Oxide Fuel Cells, Permselective Membranes, and Catalysts for Biofuel Transformation into Syngas and Hydrogen Based on Fundamental Studies of Their Real Structure, Transport Properties, and Surface Reactivity

    Full text link
    Advances in design of materials for solid oxide fuel cells, oxygen and hydrogen separation membranes, and catalysts for biofuel conversion into syngas and hydrogen are reviewed. Application of new efficient techniques of material synthesis and characterization of their atomic-scale structure, transport properties, and reactivity allowed to develop new types of efficient cathodes and anodes for solid oxide fuel cells, asymmetric supported oxygen, and hydrogen separation membranes with high permeability and structured catalysts with nanocomposite-active components demonstrating high performance and stability to coking in steam/autothermal reforming of biofuels. © 2021 Elsevier B.V.This work was supported by the АААА-А21-121011390007-7 budget project of the Boreskov Institute of catalysis. A.A.Y. gratefully acknowledges financial support within the project CICECO — Aveiro Institute of Materials ( UIDB/50011/2020 and UIDP/50011/2020 ) financed by national funds through the FCT/MCTES and when appropriate cofinanced by FEDER under the PT2020 Partnership Agreement

    Correlation between structural and transport properties of ca-doped la nickelates and their electrochemical performance

    Full text link
    This work presents the results from a study of the structure and transport properties of Ca-doped La2NiO4+δ. La2−xCaxNiO4+δ (x = 0–0.4) materials that were synthesized via combustion of organic-nitrate precursors and characterized by X-ray diffraction (XRD), in situ XRD using synchrotron radiation, thermogravimetric analysis (TGA) and isotope exchange of oxygen with C18O2. The structure was defined as orthorhombic (Fmmm) for x = 0 and tetragonal (I4/mmm) for x = 0.1–0.4. Changes that occurred in the unit cell parameters and volume as the temperature changed during heating were shown to be caused by the excess oxygen loss. Typical for Ruddlesden–Popper phases, oxygen mobility and surface reactivity decreased as the Ca content was increased due to a reduction in the over-stoichiometric oxygen content with the exception of x = 0.1. This composition demonstrated its superior oxygen transport properties compared to La2NiO4+δ due to the enhanced oxygen mobility caused by structural features. Electrochemical data obtained showed relatively low polarization resistance for the electrodes with a low Ca content, which correlates well with oxygen transport properties. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.The materials synthesis as well as electrochemical study were performed in a framework of the budget task of the IHTE UB RAS with using the equipment of the shared access center “Composition of compounds”. The TGA and isotope exchange studies were supported by the Ministry of Science and Higher Education of the Russian Federation within the governmental order for Boreskov Institute of Catalysis (projects АААА‐А21‐121011390007‐7, АААА‐А21‐ 121011390009‐1). The SXRD experiments were performed at the shared research center SSTRC on the basis of the Novosibirsk VEPP‐3 complex at BINP SB RAS, using equipment supported by pro‐ ject RFMEFI62119X0022

    High-Temperature Behavior, Oxygen Transport Properties, and Electrochemical Performance of Cu-Substituted Nd1.6Ca0.4NiO4+δ Electrode Materials

    Full text link
    In this study, Nd1.6Ca0.4Ni1−yCuyO4+δ-based electrode materials for intermediate temperature solid oxide fuel cells (IT-SOFCs) are investigated. Materials of the series (y = 0–0.4) are obtained by pyrolysis of glycerol-nitrate compositions. The study of crystal structure and high-temperature stability in air and under low oxygen partial pressure atmospheres are performed using high-resolution neutron and in situ X-ray powder diffraction. All the samples under the study assume a structure with Bmab sp.gr. below 350◦C and with I4/mmm sp.gr. above 500◦C. A transition in the volume thermal expansion coefficient values from 7.8–9.3 to 9.1–12.0 × 10−6, K−1 is observed at approximately 400◦C in air and 500◦C in helium.The oxygen self-diffusion coefficient values, obtained using isotope exchange, monotonically decrease with the Cu content increasing, while concentration dependence of the charge carriers goes through the maximum at x = 0.2. The Nd1.6Ca0.4Ni0.8Cu0.2O4+δ electrode materialdemonstrates chemical compatibility and superior electrochemical performance in the symmetrical cells with Ce0.8Sm0.2O1.9, BaCe0.8Sm0.2O3−δ, BaCe0.8Gd0.19Cu0.1O3−δ and BaCe0.5Zr0.3Y0.1Yb0.1O3−δ solid electrolytes, potentially for application in IT-SOFCs. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.122013100200-2; Ministry of Education and Science of the Russian Federation, Minobrnauka: AAAA-A21-121011390009-1; Ural Branch, Russian Academy of Sciences, UB RAS: 122020100324-3Material synthesis, sample preparation, and electrochemical studies were performed in the framework of budget tasks for the Institute of High Temperature Electrochemistry, UB RAS, project № 122020100324-3. The standard characterization of powder and ceramic materials was carried out at the Shared Access Centre “Composition of Compounds” of the Institute of High Temperature Electrochemistry, UB RAS. The synchrotron XRD experiments were performed at the shared research center SSTRC on the basis of the Novosibirsk VEPP-3 complex at BINP SB RAS. The in situ XRD study was carried out using the facilities of the shared research center “National Center of Investigation of Catalysts” at the Boreskov Institute of Catalysis (BIC). The part of the reported study concerning the crystal structure of the samples was funded within the framework of budget project for Synchrotron radiation facility SKIF, Boreskov Institute of Catalysis.BIC support of the isotope exchange study by the Ministry of Science and Higher Education of the Russian Federation projects AAAA-A21-121011390009-1 and AAAA-A21-121011390007-7 is greatly acknowledged. XPS study of the electrode materials was partly performed in the framework of the budget task for the Institute of Metallurgy, UB RAS, project № 122013100200-2 using the equipment of the Shared Access Centre “Ural-M” of the Institute of Metallurgy, UB RAS.Acknowledgments: Material synthesis, sample preparation, and electrochemical studies were performed in the framework of budget tasks for the Institute of High Temperature Electrochemistry, UB RAS, project №122020100324-3. The standard characterization of powder and ceramic materials was carried out at the Shared Access Centre “Composition of Compounds” of the Institute of High Temperature Electrochemistry, UB RAS. The synchrotron XRD experiments were performed at the shared research center SSTRC on the basis of the Novosibirsk VEPP-3 complex at BINP SB RAS. The in situ XRD study was carried out using the facilities of the shared research center “National Center of Investigation of Catalysts” at the Boreskov Institute of Catalysis (BIC). The part of the reported study concerning the crystal structure of the samples was funded within the framework of budget project for Synchrotron radiation facility SKIF, Boreskov Institute of Catalysis.BIC support of the isotope exchange study by the Ministry of Science and Higher Education of the Russian Federation projects AAAA-A21-121011390009-1 and AAAA -A21-121011390007-7 is greatly acknowledged. XPS study of the electrode materials was partly performed in the framework of the budget task for the Institute of Metallurgy, UB RAS, project № 122013100200-2 using the equipment of the Shared Access Centre “Ural-M” of the Institute of Metallurgy, UB RAS

    Прочность и трещиностойкость цементных композитов при многоуровневом армировании

    Get PDF
    The working hypothesis is confirmed that the required fracture toughness of structural concrete can be provided by multi-level reinforcement: at the level of the crystalline joint of cement stone – carbon nanotubes, and at the level of fine-grained concrete – various macro-sized fiber fibers (steel, polymer). Reinforcement of a crystalline splice with carbon nanotubes leads to an increase in tensile strength by 20 %, an increase in Young’s modulus. With dispersed reinforcement of concrete modified with nanoparticles at the level of fine-grained concrete, the tensile strength increases by 109 %, the critical stress intensity coefficient (crack resistance index) increases by 280 % at normal separation, and by 48 % at transverse shear.Подтверждена рабочая гипотеза о том, что требуемая вязкость разрушения конструкционного бетона может обеспечиваться многоуровневым армированием: на уровне кристаллического сростка цементного камня – углеродные нанотрубки, а на уровне мелкозернистого бетона – различные фибровые волокна макроразмера (стальная, полимерная). Армирование углеродными нанотрубками кристаллического сростка приводит к повышению прочности на растяжение на 20 %, повышению модуля Юнга. При дисперсном армировании модифицированного наночастицами бетона на уровне мелкозернистого бетона прочность на растяжение увеличивается на 109 %, критический коэффициент интенсивности напряжений (показатель трещиностойкости) при нормальном отрыве увеличивается на 280 %, при поперечном сдвиге – на 48 %
    corecore