15,723 research outputs found

    Warm Inflation with a General Form of the Dissipative Coefficient

    Full text link
    We propose and investigate a general form of the dissipative coefficient Γ=CϕTm/ϕm1\Gamma=C_{\phi}T^{m}/\phi^{m-1} in warm inflation. We focus on discussing the strong dissipative processes r=Γ/3H1r=\Gamma/3H\gg1 in the thermal state of approximate equilibrium. To this toy model, we give the slow-roll conditions, the amplitude and the index of the power spectrum under the general form of dissipative coefficient. Furthermore, the monomial potential and the hybrid-like potential are analyzed specifically. We conclude that the m=0,3m=0,3 cases are worthy further investigation especially.Comment: 24 pages, no figures, to be published on JCA

    Rigidity and stability of cold dark solid universe model

    Full text link
    Observational evidence suggests that the large scale dynamics of the universe is presently dominated by dark energy, meaning a non-luminous cosmological constituent with a negative value of the pressure to density ratio w=P/ρw=P/\rho, which would be unstable if purely fluid, but could be stable if effectively solid with sufficient rigidity. It was suggested by Bucher and Spergel that such a solid constituent might be constituted by an effectively cold (meaning approximately static) distribution of cosmic strings with w=1/3w=-1/3, or membranes with the observationally more favoured value w=2/3w=-2/3, but it was not established whether the rigidity in such models actually would be sufficient for stabilisation. The present article provides an explicit evaluation of the rigidity to density ratio, which is shown to be given in both string and membrane cases by μ/ρ=4/15\mu/\rho=4/15, and it is confirmed that this is indeed sufficient for stabilisation.Comment: 6 pages latex, revised version extended to include 4 figure

    SSME single crystal turbine blade dynamics

    Get PDF
    A study was performed to determine the dynamic characteristics of the Space Shuttle main engine high pressure fuel turbopump (HPFTP) blades made of single crystal (SC) material. The first and second stage drive turbine blades of HPFTP were examined. The nonrotating natural frequencies were determined experimentally and analytically. The experimental results of the SC second stage blade were used to verify the analytical procedures. The analytical study examined the SC first stage blade natural frequencies with respect to crystal orientation at typical operating conditions. The SC blade dynamic response was predicted to be less than the directionally solidified blade. Crystal axis orientation optimization indicated the third mode interference will exist in any SC orientation

    Dynamic characteristics of single crystal SSME blades

    Get PDF
    The Space Shuttle Main Engine (SSME) High Pressure Fuel Turbopump (HPFTP) blades are currently manufactured using a directionally solidified (DS) material, MAR-M-246+Hf. However, a necessity to reduce the occurrence of fatigue cracking within the DS blades has lead to an interest in the use of a single crystal (SC) material, PWA-1480. A study was initiated to determine the dynamic characteristics of the HPFTP blades made of SC material and find possible critical engine order excitations. This study examined both the first and second stage drive turbine blades of the HPFTP. The dynamic characterization was done analytically as well as experimentally. The analytical study examined the SC first stage HPFTP blade dynamic characteristics under typical operating conditions. The blades were analyzed using MSC/NASTRAN and a finite element model. Two operating conditions, 27500 RPM and 35000 RPM, were investigated

    Magnetic fields near the peripheries of galactic discs

    Full text link
    Magnetic fields are observed beyond the peripheries of optically detected galactic discs, while numerical models of their origin and the typical magnitudes are still absent. Previously, studies of galactic dynamo have avoided considering the peripheries of galactic discs because of the very limited (though gradually growing) knowledge about the local properties of the interstellar medium. Here we investigate the possibility that magnetic fields can be generated in the outskirts of discs, taking the Milky Way as an example. We consider a simple evolving galactic dynamo model in the "no-z" formulation, applicable to peripheral regions of galaxies, for various assumptions about the radial and vertical profiles of the ionized gas disc. The magnetic field may grow as galaxies evolve, even in the more remote parts of the galactic disc, out to radii of 15 to 30 kpc, becoming substantial after times of about 10 Gyr. This result depends weakly on the adopted distributions of the half thickness and surface density of the ionized gas component. The model is robust to changes in the amplitude of the initial field and the position of its maximum strength. The magnetic field in the remote parts of the galactic disc could be generated in situ from a seed field by local dynamo action. Another possibility is field production in the central regions of a galaxy, followed by transport to the disc's periphery by the joint action of the dynamo and turbulent diffusivity. Our results demonstrate the possibilities for the appearance and strengthening of magnetic fields at the peripheries of disc galaxies and emphasize the need for observational tests with new and anticipated radio telescopes (LOFAR, MWA, and SKA).Comment: 8 pages, 5 figure

    Investigation of the stall-induced shock wave (hammershock) at the inlet to the engine

    Get PDF
    The peak static pressures measured at the inlet to the engine during stall are presented for a turbojet and two turbofan engines. It is shown for one turbofan and the turbojet that the static pressure ratio across the hammershock does not exceed significantly the normal shock pressure ratio necessary to stop the flow. The second turbofan engine did not follow this rule. Possible reasons for the departure are discussed. For the two turbofan engines the influence of the stall method on the hammershock intensity was investigated. Data related to the spatial distribution of pressure in the hammershock are also presented

    One loop effective potential in heterotic M-theory

    Full text link
    We have calculated the one loop effective potential of the vector multiplets arising from the compactification to five dimensions of heterotic M-theory on a Calabi-Yau manifold with h^{1,1}>1. We find that extensive cancellations between the fermionic and bosonic sectors of the theory cause the effective potential to vanish, with the exception of a higher order curvature term of the type which might arise from string corrections.Comment: Latex, 28 pages, 1 figur

    X-type and Y-type junction stability in domain wall networks

    Full text link
    We develop an analytic formalism that allows one to quantify the stability properties of X-type and Y-type junctions in domain wall networks in two dimensions. A similar approach might be applicable to more general defect systems involving junctions that appear in a range of physical situations, for example, in the context of F- and D-type strings in string theory. We apply this formalism to a particular field theory, Carter's pentavac model, where the strength of the symmetry breaking is governed by the parameter ϵ<1|\epsilon|< 1. We find that for low values of the symmetry breaking parameter X-type junctions will be stable, whereas for higher values an X-type junction will separate into two Y-type junctions. The critical angle separating the two regimes is given by \alpha_c = 293^{\circ}\sqrt{|\epsilon|} and this is confirmed using simple numerical experiments. We go on to simulate the pentavac model from random initial conditions and we find that the dominant junction is of \ytype for |\epsilon| \geq 0.02 and is of \xtype for |\epsilon| \leq 0.02.Wealsofindthatforsmall. We also find that for small \epsilontheevolutionofthenumberofdomainwalls the evolution of the number of domain walls \qsubrm{N}{dw}inMinkowskispacedoesnotfollowthestandard in Minkowski space does not follow the standard \propto t^{-1}scalinglawwiththedeviationfromthestandardlorebeingmorepronouncedas scaling law with the deviation from the standard lore being more pronounced as \epsilonisdecreased.Thepresenceofdissipationappearstorestorethe is decreased. The presence of dissipation appears to restore the t^{-1}$ lore.Comment: 24 pages, 13 figures; typos fixe
    corecore