225 research outputs found
Shape of the 8B Alpha and Neutrino Spectra
The beta-delayed alpha spectrum from the decay of 8B has been measured with a
setup that minimized systematic uncertainties that affected previous
measurements. Consequently the deduced neutrino spectrum presents much smaller
uncertainties than the previous recommendation. The 8B neutrino spectrum is
found to be harder than previously recommended with about (10-20)% more
neutrinos at energies between 12-14 MeV. The efficiencies of the 37Cl, 71Ga,
40Ar, and SuperKamiokande detectors are respectively, 3.6%, 1.4%, 5.7% and 1.8%
larger than previously thought.Comment: 4 pages, 5 figure
Recoil-Order and Radiative Corrections to the aCORN Experiment
The aCORN experiment measures the electron-antineutrino -coefficient in
free neutron decay. We update the previous aCORN results to include radiative
and recoil corrections to first order. The corrected combined result is
, an increase in magnitude of 0.7 % compared to the overall relative
standard uncertainty of 1.7 %, which is unchanged. The corresponding corrected
result for the ratio of weak coupling constants is . This improves agreement with previous -coefficient
experiments, in particular the 2020 aSPECT result
Observation of a large parity nonconserving analyzing power in Xe
A large parity nonconserving longitudinal analyzing power was discovered in polarized-neutron transmission through Xe. An analyzing power of 4.3±0.2% was observed in a p-wave resonance at En=3.2 eV. The measurement was performed with a liquid Xe target of natural isotopic abundance that was placed in the polarized epithermal neutron beam, flight path 2, at the Manuel Lujan Neutron Science Center. This apparatus was constructed by the TRIPLE Collaboration, and has been used for studies of parity symmetry in compound nuclear resonances. Part of the motivation of the experiment was to discover a nucleus appropriate for a sensitive test of time-reversal invariance in polarized-neutron transmission. The large analyzing power of the observed resonance may make it possible to design a test of time reversal invariance using a polarized-Xe target
Measurement of the neutron lifetime using an asymmetric magneto- gravitational trap and in situ detection
The precise value of the mean neutron lifetime, , plays an important
role in nuclear and particle physics and cosmology. It is a key input for
predicting the ratio of protons to helium atoms in the primordial universe and
is used to search for new physics beyond the Standard Model of particle
physics. There is a 3.9 standard deviation discrepancy between
measured by counting the decay rate of free neutrons in a beam (887.7 2.2
s) and by counting surviving ultracold neutrons stored for different storage
times in a material trap (878.50.8 s). The experiment described here
eliminates loss mechanisms present in previous trap experiments by levitating
polarized ultracold neutrons above the surface of an asymmetric storage trap
using a repulsive magnetic field gradient so that the stored neutrons do not
interact with material trap walls and neutrons in quasi-stable orbits rapidly
exit the trap. As a result of this approach and the use of a new in situ
neutron detector, the lifetime reported here (877.7 0.7 (stat) +0.4/-0.2
(sys) s) is the first modern measurement of that does not require
corrections larger than the quoted uncertainties.Comment: 9 pages, 3 figures, 2 table
Status of the UCNÏ„ experiment
The neutron is the simplest nuclear system that can be used to probe the structure of the weak interaction and search for physics beyond the standard model. Measurements of neutron lifetime and β-decay correlation coefficients with precisions of 0.02% and 0.1%, respectively, would allow for stringent constraints on new physics. The UCNτ experiment uses an asymmetric magneto-gravitational UCN trap with in situ counting of surviving neutrons to measure the neutron lifetime, τ_n = 877.7s (0.7s)_(stat) (+0.4/−0.2s)_(sys). We discuss the recent result from UCNτ, the status of ongoing data collection and analysis, and the path toward a 0.25 s measurement of the neutron lifetime with UCNτ
Post-Construction Support and Sustainability in Community-Managed Rural Water Supply
Executive Summary This volume reports the main findings from a multi-country research project that was designed to develop a better understanding of how rural water supply systems are performing in developing countries. We began the research in 2004 to investigate how the provision of support to communities after the construction of a rural water supply project affected project performance in the medium term. We collected information from households, village water committees, focus groups of village residents, system operators, and key informants in 400 rural communities in Bolivia, Ghana, and Peru; in total, we discussed community water supply issues with approximately 10,000 individuals in these communities. To our surprise, we found the great majority of the village water systems were performing well. Our findings on the factors influencing their sustainability will, we hope, be of use to policy makers, investors, and managers in rural water supply
- …