1,265 research outputs found

    Superconformal spaces and implications for superstrings

    Full text link
    We clarify some properties of projective superspace by using a manifestly superconformal notation. In particular, we analyze the N=2 scalar multiplet in detail, including its action, and the propagator and its super-Schwinger parameters. The internal symmetry is taken to be noncompact (after Wick rotation), allowing boundary conditions that preserve it off shell. Generalization to N=4 suggests the coset superspace PSU(2,2|4)/OSp(4|4) for the AdS/CFT superstring.Comment: 19 pages, no figures; v2: fixed sign, added note & reference; v3: added note & references, version to appear in Physical Review

    Supersymmetric sigma models and the 't Hooft instantons

    Get PDF
    Witten's linear sigma model for ADHM instantons possesses a natural (0,4)(0,4) supersymmetry. We study generalizations of the infrared limit of the model that are invariant under (4,4)(4,4) supersymmetry. In the case of four space-time dimensions a background with a conformally flat metric and torsion is required. The geometry is specified by a single real scalar function satisfying Laplace's equation. It gives rise to 't Hooft instantons for the gauge group SU(2)SU(2), instead of the general ADHM instantons for an SO(n)SO(n) gauge group in the case (0,4)(0,4).Comment: 11 pages, Latex fil

    Manifest supersymmetry and the ADHM construction of instantons

    Full text link
    We present the (0,4) superspace version of Witten's sigma model construction for ADHM instantons. We use the harmonic superspace formalism, which exploits the three complex structures common to both (0,4) supersymmetry and self-dual Yang-Mills theory. A novel feature of the superspace formulation is the manifest interplay between the ADHM construction and its twistor counterpart.Comment: minor changes in the text; also an Appendix on off-shell structure of chiral fermion multiplets in (0,4) supersymmetry, and references adde

    N=4, 3D Supersymmetric Quantum Mechanics in Non-Abelian Monopole Background

    Full text link
    Using the harmonic superspace approach, we construct the three-dimensional N=4 supersymmetric quantum mechanics of the supermultiplet (3,4,1) coupled to an external SU(2) gauge field. The off-shell N=4 supersymmetry requires the gauge field to be a static form of the 't Hooft ansatz for the 4D self-dual SU(2) gauge fields, that is a particular solution of Bogomolny equations for BPS monopoles. We present the explicit form of the corresponding superfield and component actions, as well as of the quantum Hamiltonian and N=4 supercharges. The latter can be used to describe a more general N=4 mechanics system, with an arbitrary BPS monopole background and on-shell N=4 supersymmetry. The essential feature of our construction is the use of semi-dynamical spin (4,4,0) multiplet with the Wess-Zumino type action.Comment: 16 pages, reference added, published versio

    Covariant Harmonic Supergraphity for N = 2 Super Yang--Mills Theories

    Get PDF
    We review the background field method for general N = 2 super Yang-Mills theories formulated in the N = 2 harmonic superspace. The covariant harmonic supergraph technique is then applied to rigorously prove the N=2 non-renormalization theorem as well as to compute the holomorphic low-energy action for the N = 2 SU(2) pure super Yang-Mills theory and the leading non-holomorphic low-energy correction for N = 4 SU(2) super Yang-Mills theory.Comment: 17 pages, LAMUPHYS LaTeX, no figures; based on talks given by I. Buchbinder and S. Kuzenko at the International Seminar ``Supersymmetries and Quantum Symmetries'', July 1997, Dubna; to be published in the proceeding

    Harmonic space and quaternionic manifolds

    Get PDF
    We find a principle of harmonic analyticity underlying the quaternionic (quaternion-K\"ahler) geometry and solve the differential constraints which define this geometry. To this end the original 4n4n-dimensional quaternionic manifold is extended to a bi-harmonic space. The latter includes additional harmonic coordinates associated with both the tangent local Sp(1)Sp(1) group and an extra rigid SU(2)SU(2) group rotating the complex structures. Then the constraints can be rewritten as integrability conditions for the existence of an analytic subspace in the bi-harmonic space and solved in terms of two unconstrained potentials on the analytic subspace. Geometrically, the potentials have the meaning of vielbeins associated with the harmonic coordinates. We also establish a one-to-one correspondence between the quaternionic spaces and off-shell N=2N=2 supersymmetric sigma-models coupled to N=2N=2 supergravity. The general N=2N=2 sigma-model Lagrangian when written in the harmonic superspace is composed of the quaternionic potentials. Coordinates of the analytic subspace are identified with superfields describing N=2N=2 matter hypermultiplets and a compensating hypermultiplet of N=2N=2 supergravity. As an illustration we present the potentials for the symmetric quaternionic spaces.Comment: 44 pages, LATEX, JHU-TIPAC-920023, ENSLAPP-L-405-92, MPI-Ph/92-8

    Worldline Superfield Actions for N=2 Superparticles

    Get PDF
    We propose doubly supersymmetric actions in terms of n=2(D-2) worldline superfields for N=2 superparticles in D=3,4 and Type IIA D=6 superspaces. These actions are obtained by dimensional reduction of superfield actions for N=1 superparticles in D=4,6 and 10, respectively. We show that in all these models geometrodynamical constraints on target superspace coordinates do not put the theory on the mass shell, so the actions constructed consistently describe the dynamics of the corresponding N=2 superparticles. We also find that in contrast to the IIA D=6 superparticle a chiral IIB D=6 superparticle, which is not obtainable by dimensional reduction from N=1, D=10, is described by superfield constraints which produce dynamical equations. This implies that for the IIB D=6 superparticle the doubly supersymmetric action does not exist in the conventional form.Comment: Latex, 20 pp. Minor corrections, acknowledgements adde

    Mass-Deformed BLG Theory in Light-Cone Superspace

    Full text link
    Maximally supersymmetric mass deformation of the Bagger-Lambert-Gustavsson (BLG) theory corresponds to a {non-central} extension of the d=3 N=8 Poincare superalgebra (allowed in three dimensions). We obtain its light-cone superspace formulation which has a novel feature of the dynamical supersymmetry generators being {cubic} in the kinematical ones. The mass deformation picks a quaternionic direction, which breaks the SO(8) R-symmetry down to SO(4)xSO(4). The Hamiltonian of the theory is shown to be a quadratic form of the dynamical supersymmetry transformations, to all orders in the mass parameter, M, and the structure constants, f^{a b c d}.Comment: 23 page

    Dissolution, Reactor, and Environmental Behavior of ZrO 2 -MgO Inert Fuel Matrix Neutronic Evaluation of MgO-ZrO2 Inert Fuels

    Full text link
    In the second year of the “Dissolution, Reactor, and Environmental Behavior of ZrO2-MgO Inert Fuel Matrix” project initiated and directed by UNLV, the Ben-Gurion University (BGU) group research was focused on the development of practical PWR core nuclear design fully loaded with Reactor Grade (RG) Pu fuel incorporated in fertile free matrix. The design strategy was based on the basic feasibility study results performed at BGU in the Year 1 of the project
    corecore