180 research outputs found

    MULTIDISCIPLINARY STUDY OF SUBSIDENCE AND SINKHOLE OCCURRENCES IN THE ACQUE ALBULE BASIN (ROMA, ITALY)

    Get PDF
    Abstract We present the results of a combined analysis of remote sensing and geophysical‐geotechnical data carried out in the Acque Albule Basin, a sinkhole prone area located close to the city of Roma, where a wide travertine wedge is present. We carried out geophysical measurements and borehole drillings over two test areas to image the subsoil where paroxysmal surficial dynamics occur. One site is marked by subsidence occurring at least since the early 2000s, whereas the other site hosts the "La Regina" and "Colonnelle" sinkhole lakes, which discharge sulfur‐carbonated waters. The stability of these two sites threatens highway, railway, and airport facilities, and this study helps to assess the geological hazard. For example, InSAR and LiDAR data helped define wide scale subsidence over the last 20 years and previously undetected small‐scale morphologies. Geophysical measurements of the latter revealed shallow and deep dissolution affecting the travertine and driving surficial paroxysmal events. Both study sites were found to lie inside a large depression located at the junction between Jurassic carbonate and Plio‐Pleistocene units in association with paleo karst morphologies in the travertine deposits and affected by the present‐past spillage of sulfurous waters. Given these elements, multidisciplinary geophysical observations are crucial for assessing and mitigating the geological risk and guiding land use planning and management

    2021 Tajogaite eruption records infiltration of crustal fluids within the upper mantle beneath La Palma, Canary Islands

    Get PDF
    The 2021 Tajogaite eruption at La Palma has represented a unique opportunity to investigate the characteristics of the mantle source feeding modern volcanism in the Canary Islands. With the aim of track the fingerprint of carbon in the local oceanic lithosphere-asthenosphere system, we report the isotopic composition of CO2 (δ13C values versus Vienna Pee Dee Belemnite) in olivine- and clinopyroxene-hosted fluid inclusions (FI) from the 2021 Tajogaite lavas and from lavas/ultramafic xenoliths (olivine-clinopyroxenites, clinopyroxenites, dunites and harzburgites) from the nearby 1677 San Antonio eruption cone/lavas, in an attempt to characterize the origin and evolution of carbon within the local mantle source. Our results indicate that the 2021 and 1677 lavas exhibit δ13C values ranging from −4.94‰ to −2.71‰ and CO2/3He ratios from 3.37 to 6.14 × 109. Ultramafic xenoliths fall in a comparable range of values despite showing higher CO2 concentrations. Our δ13C values fall within the range of carbon isotope results previously reported for the Dos Aguas cold spring located in the Taburiente Caldera (northern La Palma), suggesting an apparent carbon isotope homogeneity at the scale of the entire island. The (relatively narrow) δ13C vs. CO2/3He ratio range of La Palma samples is interpreted to reflect either i) variable extents of open-system degassing of a common mantle endmember having δ13C of ∼1.7‰, or ii) mixing between depleted mantle-like carbon (−6‰ < δ13C < −4‰) and crustal carbon (δ13C = 0‰) endmembers. Both models testify a crustal carbon component recycled in the local mantle. This component, also detected in mantle xenoliths from the neighboring island of El Hierro and the easternmost Lanzarote, indicates a regional characteristic of the mantle beneath the Canary Islands, interpreted as a result of infiltration of carbon-rich melts during past metasomatic events in the local mantle

    Magma recharge and mush rejuvenation drive paroxysmal activity at Stromboli volcano

    Get PDF
    AbstractOpen-conduit basaltic volcanoes can be characterised by sudden large explosive events (paroxysms) that interrupt normal effusive and mild explosive activity. In June-August 2019, one major explosion and two paroxysms occurred at Stromboli volcano (Italy) within only 64 days. Here, via a multifaceted approach using clinopyroxene, we show arrival of mafic recharges up to a few days before the onset of these events and their effects on the eruption pattern at Stromboli, as a prime example of a persistently active, open-conduit basaltic volcano. Our data indicate a rejuvenated Stromboli plumbing system where the extant crystal mush is efficiently permeated by recharge magmas with minimum remobilisation promoting a direct linkage between the deeper and the shallow reservoirs that sustains the currently observed larger variability of eruptive behaviour. Our approach provides vital insights into magma dynamics and their effects on monitoring signals demonstrating the power of petrological studies in interpreting patterns of surficial activity.</jats:p

    Primary carbonatite melt from deeply subducted oceanic crust

    Get PDF
    Partial melting in the Earth's mantle plays an important part in generating the geochemical and isotopic diversity observed in volcanic rocks at the surface. Identifying the composition of these primary melts in the mantle is crucial for establishing links between mantle geochemical 'reservoirs' and fundamental geodynamic processes. Mineral inclusions in natural diamonds have provided a unique window into such deep mantle processes. Here we provide experimental and geochemical evidence that silicate mineral inclusions in diamonds from Juina, Brazil, crystallized from primary and evolved carbonatite melts in the mantle transition zone and deep upper mantle. The incompatible trace element abundances calculated for a melt coexisting with a calcium-titanium-silicate perovskite inclusion indicate deep melting of carbonated oceanic crust, probably at transition-zone depths. Further to perovskite, calcic-majorite garnet inclusions record crystallization in the deep upper mantle from an evolved melt that closely resembles estimates of primitive carbonatite on the basis of volcanic rocks. Small-degree melts of subducted crust can be viewed as agents of chemical mass-transfer in the upper mantle and transition zone, leaving a chemical imprint of ocean crust that can possibly endure for billions of years.4 page(s
    corecore