19 research outputs found

    Observation of bright polariton solitons in a semiconductor microcavity

    Get PDF
    Microcavity polaritons are composite half-light half-matter quasi-particles, which have recently been demonstrated to exhibit rich physical properties, such as non-equilibrium Bose-Einstein condensation, parametric scattering and superfluidity. At the same time, polaritons have some important advantages over photons for information processing applications, since their excitonic component leads to weaker diffraction and stronger inter-particle interactions, implying, respectively, tighter localization and lower powers for nonlinear functionality. Here we present the first experimental observations of bright polariton solitons in a strongly coupled semiconductor microcavity. The polariton solitons are shown to be non-diffracting high density wavepackets, that are strongly localised in real space with a corresponding broad spectrum in momentum space. Unlike solitons known in other matter-wave systems such as Bose condensed ultracold atomic gases, they are non-equilibrium and rely on a balance between losses and external pumping. Microcavity polariton solitons are excited on picosecond timescales, and thus have significant benefits for ultrafast switching and transfer of information over their light only counterparts, semiconductor cavity lasers (VCSELs), which have only nanosecond response time

    Spontaneous vortices in optically shaped potential profiles in semiconductor microcavities

    Get PDF
    We investigate the spontaneous formation of quantized vortices in microcavity polariton high density phases. Condensates formed in the optical parametric oscillator excitation scheme reveal single vortices in the case of a ring-shaped optical potential or in the presence of natural photonic disorder. We further investigate the dynamics of vortex formation for resonantly injected polaritons and observe the formation of vortex-antivortex pairs, but no single vortices. The observed effects are explained by the interplay between breaking of y↦−y reflection symmetry in the system and conservation of optical angular momentum

    Spatial Patterns of Dissipative Polariton Solitons in Semiconductor Microcavities

    Get PDF
    We report propagating bound microcavity polariton soliton arrays consisting of multipeak structures either along (x) or perpendicular (y) to the direction of propagation. Soliton arrays of up to five solitons are observed, with the number of solitons controlled by the size and power of the triggering laser pulse. The breakup along the x direction occurs when the effective area of the trigger pulse exceeds the characteristic soliton size determined by polariton-polariton interactions. Narrowing of soliton emission in energymomentum space indicates phase locking between adjacent solitons, consistent with numerical modeling which predicts stable multihump soliton solutions. In the y direction, the breakup originates from inhomogeneity across the wave front in the transverse direction which develops into a stable array only in the solitonic regime via phase-dependent interactions of propagating fronts

    Effects of Spin-Dependent Interactions on Polarization of Bright Polariton Solitons

    Get PDF
    We report on the spin properties of bright polariton solitons supported by an external pump to compensate losses. We observe robust circularly polarized solitons when a circularly polarized pump is applied, a result attributed to phase synchronization between nondegenerate TE and TM polarized polariton modes at high momenta. For the case of a linearly polarized pump, either σ+ or σ− circularly polarized bright solitons can be switched on in a controlled way by a σ+ or σ− writing beam, respectively. This feature arises directly from the widely differing interaction strengths between co- and cross-circularly polarized polaritons. In the case of orthogonally linearly polarized pump and writing beams, the soliton emission on average is found to be unpolarized, suggesting strong spatial evolution of the soliton polarization. The observed results are in agreement with theory, which predicts stable circularly polarized solitons and unstable linearly polarized solitons

    The 2019 surface acoustic waves roadmap

    Get PDF
    Today, surface acoustic waves (SAWs) and bulk acoustic waves are already two of the very few phononic technologies of industrial relevance and can been found in a myriad of devices employing these nanoscale earthquakes on a chip. Acoustic radio frequency filters, for instance, are integral parts of wireless devices. SAWs in particular find applications in life sciences and microfluidics for sensing and mixing of tiny amounts of liquids. In addition to this continuously growing number of applications, SAWs are ideally suited to probe and control elementary excitations in condensed matter at the limit of single quantum excitations. Even collective excitations, classical or quantum are nowadays coherently interfaced by SAWs. This wide, highly diverse, interdisciplinary and continuously expanding spectrum literally unites advanced sensing and manipulation applications. Remarkably, SAW technology is inherently multiscale and spans from single atomic or nanoscopic units up even to the millimeter scale. The aim of this Roadmap is to present a snapshot of the present state of surface acoustic wave science and technology in 2019 and provide an opinion on the challenges and opportunities that the future holds from a group of renown experts, covering the interdisciplinary key areas, ranging from fundamental quantum effects to practical applications of acoustic devices in life science

    The Tree Biodiversity Network (BIOTREE-NET): prospects for biodiversity research and conservation in the Neotropics

    Get PDF
    Biodiversity research and conservation efforts in the tropics are hindered by the lack of knowledge of the assemblages found there, with many species undescribed or poorly known. Our initiative, the Tree Biodiversity Network (BIOTREE-NET), aims to address this problem by assembling georeferenced data from a wide range of sources, making these data easily accessible and easily queried, and promoting data sharing. The database (GIVD ID NA-00-002) currently comprises ca. 50,000 tree records of ca. 5,000 species (230 in the IUCN Red List) from \u3e2,000 forest plots in 11 countries. The focus is on trees because of their pivotal role in tropical forest ecosystems (which contain most of the world\u27s biodiversity) in terms of ecosystem function, carbon storage and effects on other species. BIOTREE-NET currently focuses on southern Mexico and Central America, but we aim to expand coverage to other parts of tropical America. The database is relational, comprising 12 linked data tables. We summarise its structure and contents. Key tables contain data on forest plots (including size, location and date(s) sampled), individual trees (including diameter, when available, and both recorded and standardised species name), species (including biological traits of each species) and the researchers who collected the data. Many types of queries are facilitated and species distribution modelling is enabled. Examining the data in BIOTREE-NET to date, we found an uneven distribution of data in space and across biomes, reflecting the general state of knowledge of the tropics. More than 90% of the data were collected since 1990 and plot size varies widely, but with most less than one hectare in size. A wide range of minimum sizes is used to define a \u27tree\u27. The database helps to identify gaps that need filling by further data collection and collation. The data can be publicly accessed through a web application at http://portal.biotreenet.com. Researchers are invited and encouraged to contribute data to BIOTREE-NET

    The 2019 surface acoustic waves roadmap

    Get PDF
    Abstract Today, surface acoustic waves (SAWs) and bulk acoustic waves are already two of the very few phononic technologies of industrial relevance and can been found in a myriad of devices employing these nanoscale earthquakes on a chip. Acoustic radio frequency filters, for instance, are integral parts of wireless devices. SAWs in particular find applications in life sciences and microfluidics for sensing and mixing of tiny amounts of liquids. In addition to this continuously growing number of applications, SAWs are ideally suited to probe and control elementary excitations in condensed matter at the limit of single quantum excitations. Even collective excitations, classical or quantum are nowadays coherently interfaced by SAWs. This wide, highly diverse, interdisciplinary and continuously expanding spectrum literally unites advanced sensing and manipulation applications. Remarkably, SAW technology is inherently multiscale and spans from single atomic or nanoscopic units up even to the millimeter scale. The aim of this Roadmap is to present a snapshot of the present state of surface acoustic wave science and technology in 2019 and provide an opinion on the challenges and opportunities that the future holds from a group of renown experts, covering the interdisciplinary key areas, ranging from fundamental quantum effects to practical applications of acoustic devices in life science.EU Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 642688 (SAWtrain)

    La Red Internacional de Inventarios Forestales (BIOTREE-NET) en Mesoamérica: avances, retos y perspectivas futuras

    Get PDF
    Conservation efforts in Neotropical regions are often hindered by lack of data, since for many species there is a vacuum of information, and many species have not even been described yet. The International Network of Forest Inventory Plots (BIOTREE-NET) gathers and facilitates access to tree data from forest inventory plots in Mesoamerica, while encouraging data exchange between researchers, managers and conservationists. The information is organised and standardised into a single database that includes spatially explicit data. This article describes the scope and objectives of the network, its progress, and the challenges and future perspectives. The database includes above 50000 tree records of over 5000 species from more than 2000 plots distributed from southern Mexico through to Panama. Information is heterogeneous, both in nature and shape, as well as in the geographical coverage of inventory plots. The database has a relational structure, with 12 inter-connected tables that include information about plots, species names, dbh, and functional attributes of trees. A new system that corrects typographical errors and achieves taxonomic and nomenclatural standardization was developed using The Plant List (http://theplantlist.org/) as reference. Species distribution models have been computed for around 1700 species using different methods, and they will be publicly accessible through the web site in the future (http://portal.biotreenet.com). Although BIOTREE-NET has contributed to the development of improved species distribution models, its main potential lies, in our opinion, in studies at the community level. Finally, we emphasise the need to expand the network and encourage researchers willing to share data and to join the network and contribute to the generation of further knowledge about forest biodiversity in Neotropical regions

    Spatial self-organization of macroscopic quantum states of exciton-polaritons in acoustic lattices

    Get PDF
    Exciton-polariton systems can sustain macroscopic quantum states (MQSs) under a periodic potential modulation. In this paper, we investigate the structure of these states in acoustic square lattices by probing their wave functions in real and momentum spaces using spectral tomography. We show that the polariton MQSs, when excited by a Gaussian laser beam, self-organize in a concentric structure, consisting of a single, two-dimensional gap-soliton (GS) state surrounded by one dimensional (1D) MQSs with lower energy. The latter form at hyperbolical points of the modulated polariton dispersion. While the size of the GS tends to saturate with increasing particle density, the emission region of the surrounding 1D states increases. The existence of these MQSs in acoustic lattices is quantitatively supported by a theoretical model based on the variational solution of the Gross–Pitaevskii equation. The formation of the 1D states in a ring around the central GS is attributed to the energy gradient in this region, which reduces the overall symmetry of the lattice. The results broaden the experimental understanding of self-localized polariton states, which may prove relevant for functionalities exploiting solitonic objects
    corecore