913 research outputs found

    Bankruptcy risk model and empirical tests

    Get PDF
    We analyze the size dependence and temporal stability of firm bankruptcy risk in the US economy by applying Zipf scaling techniques. We focus on a single risk factor-the debt-to-asset ratio R-in order to study the stability of the Zipf distribution of R over time. We find that the Zipf exponent increases during market crashes, implying that firms go bankrupt with larger values of R. Based on the Zipf analysis, we employ Bayes's theorem and relate the conditional probability that a bankrupt firm has a ratio R with the conditional probability of bankruptcy for a firm with a given R value. For 2,737 bankrupt firms, we demonstrate size dependence in assets change during the bankruptcy proceedings. Prepetition firm assets and petition firm assets follow Zipf distributions but with different exponents, meaning that firms with smaller assets adjust their assets more than firms with larger assets during the bankruptcy process. We compare bankrupt firms with nonbankrupt firms by analyzing the assets and liabilities of two large subsets of the US economy: 2,545 Nasdaq members and 1,680 New York Stock Exchange (NYSE) members. We find that both assets and liabilities follow a Pareto distribution. The finding is not a trivial consequence of the Zipf scaling relationship of firm size quantified by employees-although the market capitalization of Nasdaq stocks follows a Pareto distribution, the same distribution does not describe NYSE stocks. We propose a coupled Simon model that simultaneously evolves both assets and debt with the possibility of bankruptcy, and we also consider the possibility of firm mergers.Comment: 8 pages, 8 figure

    Peroxisome proliferator-activated receptor delta limits the expansion of pathogenic Th cells during central nervous system autoimmunity.

    Get PDF
    Peroxisome proliferator-activated receptors (PPARs; PPAR-alpha, PPAR-delta, and PPAR-gamma) comprise a family of nuclear receptors that sense fatty acid levels and translate this information into altered gene transcription. Previously, it was reported that treatment of mice with a synthetic ligand activator of PPAR-delta, GW0742, ameliorates experimental autoimmune encephalomyelitis (EAE), indicating a possible role for this nuclear receptor in the control of central nervous system (CNS) autoimmune inflammation. We show that mice deficient in PPAR-delta (PPAR-delta(-/-)) develop a severe inflammatory response during EAE characterized by a striking accumulation of IFN-gamma(+)IL-17A(-) and IFN-gamma(+)IL-17A(+) CD4(+) cells in the spinal cord. The preferential expansion of these T helper subsets in the CNS of PPAR-delta(-/-) mice occurred as a result of a constellation of immune system aberrations that included higher CD4(+) cell proliferation, cytokine production, and T-bet expression and enhanced expression of IL-12 family cytokines by myeloid cells. We also show that the effect of PPAR-delta in inhibiting the production of IFN-gamma and IL-12 family cytokines is ligand dependent and is observed in both mouse and human immune cells. Collectively, these findings suggest that PPAR-delta serves as an important molecular brake for the control of autoimmune inflammation

    How to Choose a Champion

    Full text link
    League competition is investigated using random processes and scaling techniques. In our model, a weak team can upset a strong team with a fixed probability. Teams play an equal number of head-to-head matches and the team with the largest number of wins is declared to be the champion. The total number of games needed for the best team to win the championship with high certainty, T, grows as the cube of the number of teams, N, i.e., T ~ N^3. This number can be substantially reduced using preliminary rounds where teams play a small number of games and subsequently, only the top teams advance to the next round. When there are k rounds, the total number of games needed for the best team to emerge as champion, T_k, scales as follows, T_k ~N^(\gamma_k) with gamma_k=1/[1-(2/3)^(k+1)]. For example, gamma_k=9/5,27/19,81/65 for k=1,2,3. These results suggest an algorithm for how to infer the best team using a schedule that is linear in N. We conclude that league format is an ineffective method of determining the best team, and that sequential elimination from the bottom up is fair and efficient.Comment: 6 pages, 3 figure

    Field dependent thermodynamics and Quantum Critical Phenomena in the dimerized spin system Cu2(C5H12N2)2Cl4

    Full text link
    Experimental data for the uniform susceptibility, magnetization and specific heat for the material Cu2(C5H12N2)2Cl4 (abbreviated CuHpCl) as a function of temperature and external field are compared with those of three different dimerized spin models: alternating spin-chains, spin-ladders and the bilayer Heisenberg model. It is shown that because this material consists of weakly coupled spin-dimers, much of the data is insensitive to how the dimers are coupled together and what the effective dimensionality of the system is. When such a system is tuned to the quantum critical point by application of a field, the dimensionality shows up in the power-law dependences of thermodynamic quantities on temperature. We discuss the temperature window for such a quantum critical behavior in CuHpCl.Comment: Revtex, 5 pages, 4 figures (postscript

    Alternating Spin and Orbital Dimerization in Strong-coupling Two-band Models

    Full text link
    We study a one-dimensional Hamiltonian consisting of coupled SU(2) spin and orbital degrees of freedom. Using the density matrix renormalization group, we calculate the phase-diagram and the ground state correlation functions for this model. We find that, in addition to the ferromagnetic and power-law antiferromagnetic phases for spin and orbital degrees of freedom, this model has a gapless line extending from the ferromagnetic phase to the Bethe ansatz solvable SU(4) critical point, and a gapped phase with doubly degenerate ground states which form alternating spin and orbital singlets. The spin-gap and the order parameters are evaluated and the relevance to several recently discovered spin-gap materials is discussed.Comment: 4 pages REVTEX and 4 Postscript figure

    Magnetic impurities in the one-dimensional spin-orbital model

    Full text link
    Using one-dimensional spin-orbital model as a typical example of quantum spin systems with richer symmetries, we study the effect of an isolated impurity on its low energy dynamics in the gapless phase through bosonization and renormalization group methods. In the case of internal impurities, depending on the symmetry, the boundary fixed points can be either an open chain with a residual spin or (and) orbital triplet left behind, or a periodic chain. However, these two fixed points are indistinguishable in the sense that in both cases, the lead-correction-to-scaling boundary operators (LCBO) only show Fermi-liquid like corrections to thermodynamical quantities. (Except the possible Curie-like contributions from the residual moments in the latter cases.) In the case of external (Kondo) impurities, the boundary fixed points, depending on the sign of orbital couplings, can be either an open chain with an isolated orbital doublet due to Kondo screening or it will flow to an intermediate fixed point with the same LCBO as that of the two-channel Kondo problem. Comparison with the Kondo effect in one-dimensional (1D) Heisenberg spin chain and multi-band Hubbard models is also made.Comment: 7 pages, No figur

    Comparative analysis of miRNAs and their targets across four plant species

    Get PDF
    BACKGROUND: MicroRNA (miRNA) mediated regulation of gene expression has been recognized as a major posttranscriptional regulatory mechanism also in plants. We performed a comparative analysis of miRNAs and their respective gene targets across four plant species: Arabidopsis thaliana (Ath), Medicago truncatula(Mtr), Brassica napus (Bna), and Chlamydomonas reinhardtii (Cre). RESULTS: miRNAs were obtained from mirBase with 218 miRNAs for Ath, 375 for Mtr, 46 for Bna, and 73 for Cre, annotated for each species respectively. miRNA targets were obtained from available database annotations, bioinformatic predictions using RNAhybrid as well as predicted from an analysis of mRNA degradation products (degradome sequencing) aimed at identifying miRNA cleavage products. On average, and considering both experimental and bioinformatic predictions together, every miRNA was associated with about 46 unique gene transcripts with considerably variation across species. We observed a positive and linear correlation between the number miRNAs and the total number of transcripts across different plant species suggesting that the repertoire of miRNAs correlates with the size of the transcriptome of an organism. Conserved miRNA-target pairs were found to be associated with developmental processes and transcriptional regulation, while species-specific (in particular, Ath) pairs are involved in signal transduction and response to stress processes. Conserved miRNAs have more targets and higher expression values than non-conserved miRNAs. We found evidence for a conservation of not only the sequence of miRNAs, but their expression levels as well. CONCLUSIONS: Our results support the notion of a high birth and death rate of miRNAs and that miRNAs serve many species specific functions, while conserved miRNA are related mainly to developmental processes and transcriptional regulation with conservation operating at both the sequence and expression level

    Phase diagram and symmetry breaking of SU(4) spin-orbital chain in a generalized external field

    Full text link
    The ground state phases of a one-dimensional SU(4) spin-orbital Hamiltonian in a generalized external field are studied on the basis of Bethe-ansatz solution. Introducing three Land\'e gg factors for spin, orbital and their products in the SU(4) Zeeman term, we discuss systematically the various symmetry breaking. The magnetization versus external field are obtained by solving Bethe-ansatz equations numerically. The phase diagrams corresponding to distinct residual symmetries are given by means of both numerical and analytical methods.Comment: Revtex4, 16 pages, 7 figure

    Magnetic properties of an SU(4) spin-orbital chain

    Full text link
    In this paper, we study the magnetic properties of the one-dimensional SU(4) spin-orbital model by solving its Bethe ansatz solution numerically. It is found that the magnetic properties of the system for the case of gt=1.0g_t=1.0 differs from that for the case of gt=0.0g_t=0.0. The magnetization curve and susceptibility are obtained for a system of 200 sites. For 0<gt<gs0<g_t<g_s, the phase diagram depending on the magnetic field and the ratio of Land\'e factors, gt/gsg_t/g_s, is obtained. Four phases with distinct magnetic properties are found.Comment: 4 pages, 2 figure

    Spinons in a Crossed-Chains Model of a 2D Spin Liquid

    Full text link
    Using Random Phase Approximation, we show that a crossed-chains model of a spin-1/2 Heisenberg spins, with frustrated interchain couplings, has a non-dimerized spin-liquid ground state in 2D, with deconfined spinons as the elementary excitations. The results are confirmed by a bosonization study, which shows that the system is an example of a `sliding Luttinger liquid'. In an external field, the system develops an incommensurate field-induced long range order with a finite transition temperature.Comment: 4 pages, 3 figures; added references; scaling analysis, preserving spin rotational invariance, is extended to finite temperatur
    corecore