2,223 research outputs found
Advanced LIGO's ability to detect apparent violations of the cosmic censorship conjecture and the no-hair theorem through compact binary coalescence detections
We study the ability of the advanced Laser Interferometer Gravitational-wave
Observatory (aLIGO) to detect apparent violations of the cosmic censorship
conjecture and the no-hair theorem. The cosmic censorship conjecture, which is
believed to be true in the theory of general relativity, limits the
spin-to-mass-squared ratio of a Kerr black hole. The no-hair theorem, which is
also believed to be true in the theory of general relativity, suggests a
particular value for the tidal Love number of a non-rotating black hole. Using
the Fisher matrix formalism, we examine the measurability of the spin and tidal
deformability of compact binary systems involving at least one putative black
hole. Using parameter measurement errors and correlations obtained from the
Fisher matrix, we determine the smallest detectable violation of bounds implied
by the cosmic censorship conjecture and the no-hair theorem. We examine the
effect of excluding unphysical areas of parameter space when determining the
smallest detectable apparent violations, and we examine the effect of different
post-Newtonian corrections to the amplitude of the compact binary coalescence
gravitational waveform. In addition, we perform a brief study of how the
recently calculated 3.0 pN and 3.5 pN spin-orbit corrections to the phase
affect spin and mass parameter measurability. We find that physical priors on
the symmetric mass ratio and higher harmonics in the gravitational waveform
could significantly affect the ability of aLIGO to investigate cosmic
censorship and the no-hair theorem for certain systems.Comment: 21 pages, 7 figures, 6 table
Towards beating the curse of dimensionality for gravitational waves using Reduced Basis
Using the Reduced Basis approach, we efficiently compress and accurately
represent the space of waveforms for non-precessing binary black hole
inspirals, which constitutes a four dimensional parameter space (two masses,
two spin magnitudes). Compared to the non-spinning case, we find that only a
{\it marginal} increase in the (already relatively small) number of reduced
basis elements is required to represent any non-precessing waveform to nearly
numerical round-off precision. Most parameters selected by the algorithm are
near the boundary of the parameter space, leaving the bulk of its volume
sparse. Our results suggest that the full eight dimensional space (two masses,
two spin magnitudes, four spin orientation angles on the unit sphere) may be
highly compressible and represented with very high accuracy by a remarkably
small number of waveforms, thus providing some hope that the number of
numerical relativity simulations of binary black hole coalescences needed to
represent the entire space of configurations is not intractable. Finally, we
find that the {\it distribution} of selected parameters is robust to different
choices of seed values starting the algorithm, a property which should be
useful for indicating parameters for numerical relativity simulations of binary
black holes. In particular, we find that the mass ratios of
non-spinning binaries selected by the algorithm are mostly in the interval
and that the median of the distribution follows a power-law behavior
Antimicrobial Treatment of Orthopedic Implant-related Infections with Rifampin Combinations
The purpose of this prospective clinical study is to evaluate the role of combination chemotherapy with rifampin in the treatment of orthopedic device—related infections in which the implant could not be removed. Eleven patients with orthopedic implant-related infections due to staphylococci or streptococci were treated with the implant in situ. Each antimicrobial regimen included rifampin in combination with a β-lactam antibiotic or ciprofloxacin. The median duration of treatment with rifampin was 86 days (range, 15-336 days) with a median follow-up of >;24 months after cessation of therapy. Treatment was successful for 82% of patients. Failures were associated with documented inappropriate treatment. These preliminary clinical data are supported by data from in vitro studies and animal experiments. Combination therapy with rifampin, in particular rifampin and a quinolone, should be considered for patients with orthopedic implant-related infections if the implant cannot be remove
Investigating the effect of precession on searches for neutron-star-black-hole binaries with Advanced LIGO
The first direct detection of neutron-star-black-hole binaries will likely be made with gravitational-wave observatories. Advanced LIGO and Advanced Virgo will be able to observe neutron-star-black-hole mergers at a maximum distance of 900Mpc. To acheive this sensitivity, gravitational-wave searches will rely on using a bank of filter waveforms that accurately model the expected gravitational-wave signal. The angular momentum of the black hole is expected to be comparable to the orbital angular momentum. This angular momentum will affect the dynamics of the inspiralling system and alter the phase evolution of the emitted gravitational-wave signal. In addition, if the black hole's angular momentum is not aligned with the orbital angular momentum it will cause the orbital plane of the system to precess. In this work we demonstrate that if the effect of the black hole's angular momentum is neglected in the waveform models used in gravitational-wave searches, the detection rate of neutron-star--black-hole systems would be reduced by . The error in this measurement is due to uncertainty in the Post-Newtonian approximations that are used to model the gravitational-wave signal of neutron-star-black-hole inspiralling binaries. We describe a new method for creating a bank of filter waveforms where the black hole has non-zero angular momentum, but is aligned with the orbital angular momentum. With this bank we find that the detection rate of neutron-star-black-hole systems would be reduced by . Systems that will not be detected are ones where the precession of the orbital plane causes the gravitational-wave signal to match poorly with non-precessing filter waveforms. We identify the regions of parameter space where such systems occur and suggest methods for searching for highly precessing neutron-star-black-hole binaries
Four types of research in the humanities: Setting the stage for research quality criteria in the humanities
This study presents humanities scholars' conceptions of research and subjective notions of quality in the three disciplines German literature studies, English literature studies, and art history, captured using 21 Repertory Grid interviews. We identified three dimensions that structure the scholars' conceptions of research: quality, time, and success. Further, the results revealed four types of research in the humanities: positively connoted ‘traditional' research (characterized as individual, discipline-oriented, and ground-breaking research), positively connoted ‘modern' research (cooperative, interdisciplinary, and socially relevant), negatively connoted ‘traditional' research (isolated, reproductive, and conservative), and negatively connoted ‘modern' research (career oriented, epigonal, calculated). In addition, 15 quality criteria for research in the three disciplines German literature studies, English literature studies, and art history were derived from the Repertory Grid interview
Staphylococcus aureus Small Colony Variants in Prosthetic Joint Infection
Background. Small colony variants of Staphylococcus aureus tend to persist despite antimicrobial therapy, especially when involved in implant-associated infections. Methods. We analyzed 5 cases of hip prosthesis-associated infections due to small colony variants, including their course prior to identification of the pathogen. Biopsy investigations included microbiological examination and, in 1 case, transmission electron microscopy to detect intracellular bacteria in nonprofessional phagocytes. A treatment concept was elaborated on the basis of a published algorithm and patients were managed accordingly. Results. The patients' mean age was 62.2 years. All patients experienced treatment failures prior to isolation of small colony variants, despite as many as 3 surgical revisions and up to 22 months of antibiotics. Transmission electron microscopy performed on biopsy specimens from periprosthetic tissue revealed intracellular cocci in fibroblasts. All prostheses were removed without implanting a spacer, and antimicrobial agents were administered for 5.5-7 weeks. Reimplantation of the prosthesis was performed for 4 patients. Follow-ups were uneventful in all 5 cases. Conclusions. In the case of a poor response to adequate antimicrobial and surgical treatment in implant-associated staphylococcal infections, small colony variants should be considered and actively sought. In our case series, a 2-stage exchange without implantation of a spacer combined with antimicrobial therapy for an implant-free interval of 6-8 weeks was associated with successful outcome, with a mean follow-up of 24 month
Amygdala responses to emotionally valenced stimuli in older and younger adults
ABSTRACT—As they age, adults experience less negative emotion, come to pay less attention to negative than to positive emotional stimuli, and become less likely to remember negative than positive emotional materials. This profile of findings suggests that, with age, the amygdala may show decreased reactivity to negative information while maintaining or increasing its reactivity to positive information. We used event-related functional magnetic resonance imaging to assess whether amygdala activation in response to positive and negative emotional pictures changes with age. Both older and younger adults showed greater activation in the amygdala for emotional than for neutral pictures; however, for older adults, seeing positive pictures led to greater amygdala activation than seeing negative pictures, whereas this was not the case for younger adults. Older adults experience less negative affect than younger adults in both cross-sectional and longitudinal studies (Carstensen, Pasupathi
A tapering window for time-domain templates and simulated signals in the detection of gravitational waves from coalescing compact binaries
Inspiral signals from binary black holes, in particular those with masses in
the range 10M_\odot \lsim M \lsim 1000 M_\odot, may last for only a few
cycles within a detector's most sensitive frequency band. The spectrum of a
square-windowed time-domain signal could contain unwanted power that can cause
problems in gravitational wave data analysis, particularly when the waveforms
are of short duration. There may be leakage of power into frequency bins where
no such power is expected, causing an excess of false alarms. We present a
method of tapering the time-domain waveforms that significantly reduces
unwanted leakage of power, leading to a spectrum that agrees very well with
that of a long duration signal. Our tapered window also decreases the false
alarms caused by instrumental and environmental transients that are picked up
by templates with spurious signal power. The suppression of background is an
important goal in noise-dominated searches and can lead to an improvement in
the detection efficiency of the search algorithms
- …
