106 research outputs found

    Photocarrier escape time in quantum-well light-absorbing devices: Effects of electric field and well parameters

    Get PDF
    We analyze the dependence of the carrier escape time from a single-quantum-well optoelectronic device on the aplied electric field and well width and depth. For this purpose, a new simple and computationally efficient theory is developed. This theory is accurate in the case of electrons, and the assessment of the applicability for holes is given. Semi-analytical expressions for the,escape times are derived. Calculations are compared to experimental results and previous numerical simulations. Significant correlations between the Position,of quantum-well energy levels and the value of the escape time are found. the main escape mechanism At room temperature is established to be thermally assisted tunneling/emission through near-barrier-edge states. The formation of a new eigenstate in the near-barrier-edge energy region is found to reduce the electron escape time significantly, which can be used for practical device optimization

    Quantum-well design for monolithic optical devices with gain and saturable absorber sections

    Get PDF
    We propose a new design of semiconductor quantum-well heterostructures, which can be used to improve the performance of monolithic mode-locked diode lasers and all-optical signal-processing devices with gain and saturable absorber sections. Numerical modeling shows that this design can increase the carrier sweep-out rate from the absorber section by several orders of magnitude, while retaining high carrier confinement on the ground level making for efficient signal amplification by the gain sections

    Electric dipole moment oscillations in Aharonov-Bohm quantum rings

    Get PDF
    Copyright © 2012 American Physical SocietyMagneto-oscillations of the electric dipole moment are predicted and analyzed for a single-electron nanoscale ring pierced by a magnetic flux (an Aharonov-Bohm ring) and subjected to an electric field in the ring's plane. These oscillations are accompanied by periodic changes in the selection rules for interlevel optical transitions in the ring allowing control of polarization properties of the associated terahertz radiation

    Low saturation fluence in a semiconductor saturable electroabsorber mirror operated in a self-biased regime

    Get PDF
    A semiconductor saturable absorber mirror utilizing the electroabsorption effect on a self-biased stack of extremely shallow quantum wells is proposed and analyzed theoretically and numerically. The saturation flux and recovery time of the proposed device when operated with picosecond incident pulses are shown to compare very favorably with existing all-optical constructions. (C) 2008 American Institute of Physics

    Nonresonant self-injection seeding of a gain-switched diode laser

    Get PDF
    We demonstrate step-tunable single-mode operation of a gain-switched diode laser by nonresonant self-injection seeding from an uncoated glass slide used as an external cavity reflector. A spectral bandwidth reduction from 11 mn to 0.05 nm and wavelength tunability has been achieved for picosecond (near-transform-limited) pulses with little effect on other laser characteristics. Good agreement with numerical simulations based on a compound-cavity laser model is also reported

    Theory of direct and indirect effect of two-photon absorption on nonlinear optical losses in high power semiconductor lasers

    Get PDF
    The effect of the transverse laser structure on two-photon absorption (TPA) related effects in high-power diode lasers is analysed theoretically. The direct effect of TPA is found to depend significantly on the transverse waveguide structure, and predicted to be weaker in broad and asymmetric waveguide designs. The indirect effect of TPA, via carrier generation in the waveguide and free-carrier absorption, is analysed for the case of a symmetric laser waveguide and shown to be strongly dependent on the active layer position. With the active layer near the mode peak, the indirect effect is weaker than the direct effect due to the population of TPA-created carriers being efficiently depleted by their diffusion and capture into the active layer, whereas for the active layer position strongly shifted towards the p-cladding, the indirect effect can become the dominant power limitation at very high currents. It is shown that for optimizing a laser design for pulsed high power operation, both TPA related effects and the inhomogeneous carrier accumulation in the waveguide caused by diffusive current need to be taken into account

    Ultrafast harmonic mode-locking of monolithic compound-cavity laser diodes incorporating photonic-bandgap reflectors

    Get PDF
    We present the first demonstration of reproducible harmonic mode-locked operation from a novel design of monolithic semiconductor laser comprising a compound cavity formed by a 1-D photonic-bandgap (PBG) mirror. Mode-locking (ML) is achieved at a harmonic of the fundamental round-trip frequency with pulse repetition rates from 131 GHz up to a record high frequency of 2.1 THz. The devices are fabricated from GaAs-Al-GaAs material emitting at a wavelength of 860 nm and incorporate two gain sections with an etched PBG reflector between them, and a saturable absorber section. Autocorrelation studies are reported which allow the device behavior for different ML frequencies, compound cavity ratios, and type and number of intra-cavity reflectors to be analyzed. The highly reflective PBG microstructures are shown to be essential for subharmonic-free ML operation of the high-frequency devices. We have also demonstrated that the single PBG reflector can be replaced by two separate features with lower optical loss. These lasers may find applications in terahertz; imaging, medicine, ultrafast optical links, and atmospheric sensing

    Strongly Localized State of a Photon at the Intersection of the Phase Slips in 2D Photonic Crystal with Low Contrast of Dielectric Constant

    Full text link
    Two-dimensional photonic crystal with a rectangular symmetry and low contrast (< 1) of the dielectric constant is considered. We demonstrate that, despite the {\em absence} of a bandgap, strong localization of a photon can be achieved for certain ``magic'' geometries of a unit cell by introducing two π/2\pi/2 phase slips along the major axes. Long-living photon mode is bound to the intersection of the phase slips. We calculate analytically the lifetime of this mode for the simplest geometry -- a square lattice of cylinders of a radius, rr. We find the magic radius, rcr_c, of a cylinder to be 43.10 percent of the lattice constant. For this value of rr, the quality factor of the bound mode exceeds 10610^6. Small (1\sim 1%) deviation of rr from rcr_c results in a drastic damping of the bound mode.Comment: 6 pages, 2 figure

    High-field electron transport in doped ZnO

    Get PDF
    Current-voltage characteristics have been measured for ZnO:Ga and Zn:Sb epitaxial layers with electron densities ranging from 1.4x10(17) cm(-3) to 1.1 x 10(20) cm(-3). Two-terminal samples with coplanar electrodes demonstrate virtually ohmic behavior until thermal effects come into play. Soft damage of the samples takes place at high currents. The threshold power (per electron) for the damage is nearly inversely proportional to the electron density over a wide range of electron densities. Pulsed voltage is applied in order to minimize the thermal effects, and thus an average electric field of 150 kV cm(-1) is reached in some samples subjected to 2 ns voltage pulses. The results are treated in terms of electron drift velocity estimated from the data on current and electron density under the assumption of uniform electric field. The highest velocity of similar to 1.5 x 10(7) cm s(-1) is found at an electric field of similar to 100 kV cm(-1) for the sample with an electron density of 1.4 x 10(17) cm(-3). The nonohmic behavior due to hot-electron effects is weak, and the dependence of the electron drift velocity on the doping resembles the variation of mobility
    corecore