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Abstract

A Semiconductor Saturable Absorber Mirror utilising the electroabsorption effect in a self-biased

stack of extremely shallow quantum wells is proposed and analysed theoretically and numerically.

The saturation flux and recovery time of the proposed device when operated with picosecond

incident pulses are shown to compare very favourably with existing all-optical constructions.
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Semiconductor Saturable Absorber Mirrors (SESAMs) are widely used for passive mode-

locking (and Q-switching) in a large number of laser constructions (see [1–4] and the ref-

erences in [4]). Most existing SESAMs operate via the all-optical absorption saturation

mechanism in Quantum Wells (QWs)[1, 4]. For high frequency operation of passively mode-

locked lasers, it is crucial for the SESAMs to have a small saturation fluence and a short

recovery time [4]. On the other hand, the total absorption variation with power in SESAMs

can be relatively modest, corresponding to a total reflectance variation ∆R of the order of

several per cent [4, 5]. As has been experimentally shown, using Quantum Dots (QDs) in

all-optical surface normal SESAMs allows obtaining a small saturation fluence (∼ 2µJ/cm2),

while maintaining a short recovery time [6].

Here, we show that the electroabsorption effect in extremely shallow QWs (ESQWs)

[7, 8] is very well suited for implementation of very low saturation fluence self-biased surface

normal electroabsorptive SESAMs. For this purpose, we propose to use the electroabsorption

effect in ESQWs in the spectral region where the absorption coefficient increases with electric

field - that is, in the region which was up to now supposed to be unusable in ESQW

electroabsorptive devices [8].

The self-biased SESAM, realised for example in the AlGaAs material system, is schemat-

ically shown in Fig.1. It comprises a simple P-i-N structure where a narrow-bandgap elec-

troabsorptive i (n0 or p0) layer is placed between P- and N-doped wide-gap layers. This

structure is grown on top of a high- reflectivity undoped AlGaAs DBR (AlAs/Al0.1Ga0.9As

in our specific case). The reflection coefficient of such a DBR with low optical losses can be

made very close to one(see e.g. [9]). No voltage is applied to the device. The incident light

has a photon energy slightly below the bandgap Eg of the i-layer.

The principle of operation of the saturable absorber in such a SESAM is very simple

[10]. Light absorption in the i-layer is governed by the electroabsorption effect due to

the built-in voltage Vb of the P+
− i − N+ structure. In steady state, the photocurrent

generated due to this electro-absorption results in a voltage drop ϕ on the load resistance.

Therefore, the voltage on the P+
− i − N+ junction decreases, which means a decrease

in the electric field in the i-layer. This leads to a decrease in the electro-absorption. An

increase of the radiation power increases the potential ϕ and thus reduces the voltage across

the junction and, correspondingly, lowers the value of the electro-absorption coefficient α.

Saturable Franz-Keldysh absorption of such a kind has been experimentally demonstrated,
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under steady-state operation, in a surface normal configuration in [11] and in a waveguide

configuration in [12].

Next, we need to specify the nature of the electroabsorptive layer. Phenomenologically,

any kind of electroabsorption effect in the spectral region where absorption coefficient in-

creases with electric field allows saturable absorption to be realised. Quantum Confined

Stark Effect (QCSE) in multiple quantum wells structures (MQWs) [13], which allows ob-

taining a large variation in absorption in this spectral region, is usually used for practi-

cal realisation of electroabsorption modulation. Achieving this large absorption variation

alongside a short recovery time requires, however, high electric field values, meaning that

a considerable voltage needs to be applied to the MQW structure. On the other hand, the

Electroabsorption effect in Extremely Shallow Quantum Wells (ESQWs) in this spectral re-

gion, at electric fields sufficient for field ionization of excitons to take place yet still modest

in absolute value (∼ 2− 5 · 104 V/cm), provides a relatively large increase in the absorption

coefficient in comparison with bulk material under only a moderate increase of the electric

field [8]. Similar to the case in bulk semiconductors, the time ttr of carrier transit through

the space charge region of a ESQW structure remains small in a broad range of electric fields

[14]. All these considerations facilitate the use of a saturable absorber mechanism in ESQW

and thus make it possible to construct compact SESAMs combining a very low saturable

fluence with a short recovery time.

The reflection coefficient RS of the proposed SESAM is given by:

RS = RDBR exp [−2α(E)Wi] − ∆Rns, (1)

where RDBR is the DBR reflectivity, Wi is the thickness of the i-layer and ∆Rns takes

into account the nonsaturable losses due to absorption outside the i-layer. We assume that

an antireflection coating is deposited onto the SESAM (see Fig. 1), with a reflectivity

RAR < 10−3 (see e.g. [15]), which is low enough for us to ignore all standing-wave effects,

effectively assuming RAR = 0. The dependence of the electro-absorption coefficient α(E) on

the the electric field in the i-layer is given by an expression typically used for Franz-Keldysh

effect:

α = α0 +
a

Wi

[Vb − ϕ] exp

[

−

E0Wi

Vb − ϕ

]

, (2)

where we have used for the electric field E the expression E = (Vb − ϕ)/Wi. α0 is the

background absorption coefficient for E ≈ 0 and a and characteristic field E0 are fitting
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parameters. We determine these parameters by fitting the available experimental data for

AlGaAs/GaAs ESQW in which 100Å-thick GaAs wells are sandwiched between 60Å-thick

Al0.04Ga0.96As barriers [8]. Then, we estimate α = αw[(100Å)/(100Å + 60Å)], where αw

is the effective absorption coefficient inside each well. The fitting of the experimental data

presented in [8] gives α0 ≈ 100cm−1, a ≈ 0.09V −1 and E0 ≈ 7.2 · 104V/cm at λ = 0.873µm.

The photocurrent iph is given by:

iph =
ePa

~ω
=

ePin

~ω

(

1 − e−2αWi

)

≈

ePin

~ω
2αWi, (3)

where e is the electron charge, ~ω is the photon energy, Pa and Pin are the optical power

absorbed in the i-layer and the incident power, respectively.

We are interested in short optical pulses with a duration t0 such that ttr << t0 << τrec,

where the potential ϕ recovery time τrec is determined by the diffusive conduction of the

P+ - and N+ - layers [16] and can be evaluated as τrec = (Rp
spr + Rn

spr + Rext)C ≈ Rp
sprC,

where C(Wi, w) is the device capacitance, mainly determined by the capacitance of the

P+
− i−N+ - junction, and Rp

spr and Rn
spr are the spread resistances of the P+ - and N+ -

layers correspondingly, with Rspr = Rs/8π, Rs being the resistance per square [16]. Then,

ϕ(t) ≈
1

C

t0
∫

0

iph(t
′)dt′. (4)

Using Eqns (2)-(4), we obtain dϕ

dt
≈

2eWi

~ωC
α(ϕ)Pin(t) and, after separation of variables, arrive

at the final expression connecting ϕ to the incident energy fluence Fin:

ϕ
∫

0

dφ

α(φ)
≈

2eWi

~ωC

t0
∫

0

Pin(t′)dt′ =
2eWiAX

~ωC
Fin. (5)

where the SESAM cross-section is AX ≈ πw2. Solving this transcendental equation for the

potential ϕ gives us ϕ as a function of the incident fluence Fin (see Fig. 2(a)). Substituting

the resulting dependence ϕ(Fin) into equations (2) and (1), we obtain the Fin dependences of

the electro-absorption coefficient α(Fin) (Fig. 2(a)) and the reflectivity Rs(Fin) (Fig. 2(b)),

respectively.

We note that the dependences of both the potential ϕ and the absorption coefficient on

the incident light fluence take a particularly simple form when we can assume that ϕ << Vb.

In that case, we can approximate

α(ϕ) ≈ αuns −

∣

∣

∣

∣

∂α

∂ϕ

∣

∣

∣

∣

ϕ (6)
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where the derivative is taken at ϕ = 0 and can be easily evaluated analytically, and αuns =

α(ϕ = 0) is the unsaturated absorption. Then, we can obtain the expression for the potential

in the form

ϕ(Fin) ≈ αuns

(

∣

∣

∣

∣

∂α

∂ϕ

∣

∣

∣

∣

ϕ=0

)−1
[

1 − exp

(

−

Fin

Fsat

)]

, (7)

where

Fsat =

(

2eWiAX

~ωC

∣

∣

∣

∣

∂α

∂ϕ

∣

∣

∣

∣

ϕ=0

)−1

(8)

and for the absorption, in the form

α(Fin) ≈ αuns exp

(

−

Fin

Fsat

)

, (9)

which is a well known phenomenological description of slow absorption saturation with a

saturation fluence Fsat, widely used for QW and QD saturable absorbers (see e.g. [5] and

references therein). An explicit expression for the parameter Fsat for our mechanism is easily

obtained by evaluating
∣

∣

∣

∂α
∂ϕ

∣

∣

∣
at ϕ = 0; the result is

Fsat =
~ωC

2eaAX

Vb

Vb + E0Wi

exp

(

E0Wi

Vb

)

(10)

If the capacitance C is entirely determined by the SESAM layer structure then C =

ǫ0ǫAX/Wi, with ǫ, as usual, being the relative dielectric permittivity of the semiconduc-

tor and ǫ0,the dielectric permitivity of vacuum. In this case, the saturation flux Fsat does

not depend on AX , and the sole reduced parameter that determines Fsat is WiE0/Vb. The

dependence Fsat(WiE0/Vb) has a minimum at WiE0/Vb ≈ 1.62. With Vb ≈ 1.2V , the min-

imum fluence is thus at Wi ≈ 0.27µm. For the calculation of the curves shown in Fig.2,

we have chosen a slightly smaller value Wi = 0.2µm, which only slightly compromises

Fsat while the transit time ttr for the holes is twice smaller than at Wi = 0.27µm. The

Wi = 0.2µm-thick electroabsortive material consists of 12 ESQWs, i.e. of 13 barriers of

60Å-thick Al0.04Ga0.96As and 12 wells of 100Å-thick GaAs.

We also assume in the calculations that the hole (electron) density in the doped P+ (N+)

layer is ∼ (1017
−1018)cm−3. The carrier density in the i - layer is ∼ 1015cm−3. Such carrier

densities are typically used in modelling P-i-N electroabsorptive devices [17] and are indeed

normal in both MOCVD and MBE grown undoped GaAs layers [18] [19] and undoped deep

AlGaAs/GaAs QWs [19]. At such small carrier densities, the electrical field is approximately

constant across the i-layer for Wi ≈ 0.2µm and ϕ < 0.7V (see fig.2a)).
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As can be seen from Figure 2, Eqns. (6) and (9) work well for low Fin. In a broader

range of Fin, α(Fin) is found to be described quite well by a heuristic expression

α(Fin) ≈ (αuns − α0) exp

(

−

Fin

Fsat

)

+ α0, (11)

with the same Fsat as in Eqn. (9) (see Fig.2a). This expression is mathematically equiv-

alent to treating α0 as unsaturable background absorption.

As can be seen from Fig.2b, the saturation fluence of the proposed SESAM is much

smaller than the one of an all-optical QD device. This is unsurprising as the proposed

SESAM belongs to the class of Self-Electrooptic-Effect Devices (SEEDs), for which the

switching energy can be much smaller than the one achieved in genuinely all-optical devices

[13]. For the specific device of Fig.1, the transit time is τtr ∼ 3ps and is determined by

the hole transit time. Then for a pulse duration of t0 ∼ 5 − 10ps the recovery time can be

as small as τrec ∼ 10 − 20ps. Such a value of τrec can be easily obtained for the proposed

SESAM when 2w ∼ 50µm(C ∼ 1pF ), d ∼ 1µm, and the doping level of the P+ AlxGa1−xAs

layer (with a small percentage of Aluminium) is ∼ 1018cm−3. The recovery time τrec can be

brought down to 5-10 ps, at the expense of a corresponding increase of Jsat (assuming the

same pulse duration of t0 ∼ 5 − 10ps).

To conclude, we have proposed and analysed, numerically and analytically, a ESQW-

based self-electrooptic-device type SESAM construction for operation with pisosecond

pulses. Construction dependencies of the parameters of the proposed device have been

discussed, and it has been shown that its saturation flux can be as low as ≈ 0.5µJ/cm2,

with the recovery time ∼ 10 − 20 ps.
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FIG. 1: Schematical view of a self-biased surface normal Extremely Shallow Quantum Well elec-

troabsorptive self-biased SESAM. w is the radius of the light spot.
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FIG. 2: a) Potential ϕ (curve 1) and absorption coefficient α (curves 2, 3 and 4) as functions of

incident fluence Fin. Curves 1 and 2 are the exact solutions of Eqns.(2) and (5); curve 3 is the

approximate solution (Eqns.(9)-(10)); curve 4 is the approximate solution(Eqns.(11) and (10)). (b)

Reflectivity Rs as a function of incident fluence Fin: exact (curve 1) and approximate (curve 2)

solutions. RDBR = 1 and ∆Rns = 0.005. Experimental results for all optical QD SESAM from

[4, 7] with ∆Rns = 0.002 are shown as 3. Vertical lines denote the saturation fluences for SESAMs

of the proposed type and that of [4, 7].
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