103 research outputs found

    A Case Of Media Budget Definition In The Banking Industry

    Get PDF
    The problem that usually all enterprises face, in the presence of scarce resources, concerns the definition of the communication budget and a media planning compatible with the objectives of communication and with the budget itself. The case we refer to, the Banco Popolare, is an example of best practice in defining the budget and in assigning the same on the various media. The many merger cases that have characterized the Italian banking world, in the last years, have consequently led to an exponential growth of the communication investments in this industry. With the aim of facilitating the rebranding process and repositioning of the business, heavy investments in institutional communication are often required

    Spin-dependent direct gap emission in tensile-strained Ge films on Si substrates

    Full text link
    The circular polarization of direct gap emission of Ge is studied in optically-excited tensile-strained Ge-on-Si heterostructures as a function of doping and temperature. Owing to the spin-dependent optical selection rules, the radiative recombinations involving strain-split light (cG-LH) and heavy hole (cG-HH) bands are unambiguously resolved. The fundamental cG-LH transition is found to have a low temperature circular polarization degree of about 85% despite an off-resonance excitation of more than 300 meV. By photoluminescence (PL) measurements and tight binding calculations we show that this exceptionally high value is due to the peculiar energy dependence of the optically-induced electron spin population. Finally, our observation of the direct gap doublet clarifies that the light hole contribution, previously considered to be negligible, can dominate the room temperature PL even at low tensile strain values of about 0.2%

    Composition profiling of inhomogeneous SiGe nanostructures by Raman spectroscopy

    Get PDF
    In this work, we present an experimental procedure to measure the composition distribution within inhomogeneous SiGe nanostructures. The method is based on the Raman spectra of the nanostructures, quantitatively analyzed through the knowledge of the scattering efficiency of SiGe as a function of composition and excitation wavelength. The accuracy of the method and its limitations are evidenced through the analysis of a multilayer and of self-assembled islands

    Raman Spectroscopy for the Analysis of Temperature-Dependent Plastic Relaxation of SiGe Layers

    Get PDF
    Novel architectures for electronics and photonics are expected to be developed using the forthcoming Si 1−x Ge x technology. However, in Si 1−x Ge x -based heterostructures, materials and design issues rely on accurate control of strain and composition of the alloy. The Raman spectroscopy has rapidly emerged as a reliable technique for the quantitative determination of such parameters on a sub-micrometric scale. In this work we present an investigation of the effects of the growth conditions of Si 1−x Ge x graded layers on dislocation nucleation and interaction. In particular, we focus on the crucial role the deposition temperature plays in the dislocation kinetics. The analysis of threading dislocation densities is accompanied by a quantitative measurement of the residual strain in Si1−xGex/Si heterostructures, carried out by means of the Raman scattering. Our approach is effective in studying the physical mechanism governing dislocation multiplication and the sharp transition from a state of brittleness to a state of ductility within a narrow temperature window

    Ordered Arrays of SiGe Islands from Low-Energy PECVD

    Get PDF
    SiGe islands have been proposed for applications in the fields of microelectronics, optoelectronics and thermoelectrics. Although most of the works in literature are based on MBE, one of the possible advantages of low-energy plasma-enhanced chemical vapor deposition (LEPECVD) is a wider range of deposition rates, which in turn results in the possibility of growing islands with a high Ge concentration. We will show that LEPECVD can be effectively used for the controlled growth of ordered arrays of SiGe islands. In order to control the nucleation of the islands, patterned Si (001) substrates were obtained by e-beam lithography (EBL) and dry etching. We realized periodic circular pits with diameters ranging from 80 to 300 nm and depths from 65 to 75 nm. Subsequently, thin films (0.8–3.2 nm) of pure Ge were deposited by LEPECVD, resulting in regular and uniform arrays of Ge-rich islands. LEPECVD allowed the use of a wide range of growth rates (0.01–0.1 nm s−1) and substrates temperatures (600–750°C), so that the Ge content of the islands could be varied. Island morphology was characterized by AFM, while μ-Raman was used to analyze the Ge content inside the islands and the composition differences between islands on patterned and unpatterned areas of the substrate

    X-ray Nanodiffraction on a Single SiGe Quantum Dot inside a Functioning Field-Effect Transistor

    Get PDF
    For advanced electronic, optoelectronic, or mechanical nanoscale devices a detailed understanding of their structural properties and in particular the strain state within their active region is of utmost importance. We demonstrate that X-ray nanodiffraction represents an excellent tool to investigate the internal structure of such devices in a nondestructive way by using a focused synchotron X-ray beam with a diameter of 400 nm. We show results on the strain fields in and around a single SiGe island, which serves as stressor for the Si-channel in a fully functioning Si-metal-oxide semiconductor field-effect transistor
    corecore